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1.1 Hydrodynamic Stability of a Gas/Liquid Interface

Hydrodynamic stability is one of the important branches of fluid
mechanics. The original interest in this field was mainly in the area
of transition of laminar to turbulent motion. In recent years, however,
methods of hydrodynamic stability have been extended to treat the
stability of the interface between two fluids. The motivation for
studying dynamics of the interface comes from a variety of phenomena
occurring in nature and in modern engineering problems. An example of
the former which has fascinated the scientific mind for a long time is
the generation of waves on the ocean surface by wind. Since the wind
motion is practically incompressible, many of the earlier investigations
were concerned with two incompressible fluids in parallel motion. With
the advent of space age it was felt necessary to provide some means of
cooling the spacecraft re-entering the atmosphere at hyper velocities.
An efficient way of achieving this is to inject a liquid coolant through
the nose of the spacecraft so that a layer of liquid is maintained on
the windward surface. Thus, effective cooling can be accomplished if
the liquid film stays adhered to the surface. Therefore stability of
liquid films in high speed gas environments received a great deal of
attention in the 1970's.

It is a fact of experience that wind blowing over water generates
waves on the interface and that, under certain conditions, these waves

grow in size. Once a wave reaches a significant height droplets are
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stripped off from the wave crests and get entrained in the air. Hence

the liquid is lost not only due to the simple process of evaporation !
but also due to the entrainment. In fact, current investigations show

that the latter mechanism is more dominant.

It is the purpose of the present work to introduce the element of
interface mass transfer into the stability problem. Several simplifying
assumptions have been made to gain a first insight into the nature of k
the problem and to permit analytical tractability. To this end only
the linear stability problem is considered. Physically, this assumption
implies that the waves on the interface are of infinitesimal amplitude
or, put differently, the wave amplitude is much smaller than the wave-
length. It is unlikely that the mechanism of entrainment would be
significant under these circumstances and hence only the mass transfer
due to evaporation is taken into account. Another key assumption
introduced in the present study is that the gas motion is incompressible.
It may be argued that mass transfer effects would be negligible in the
incompressible case and therefore it is the case of compressible gas that
is worth examining. However, in many natural processes and engineering
problems the air flow is incompressible; for example, interactions
between wind and ocean surface, dispersion of pollutants into the
atmosphere from large bodies of water, two-phase flows and industrial
drying processes. Apart from these practical applications, the fact
that the incompressible pioblem has not yet been completely understood

provides motivation for the present work. Also, the experience gained




in the study of boundary layer stability has shown that the compressible
problem is considerably more complicated than its incompressible counter-
part. Indeed, a complete spectrum of eigenvalues of the simple Blasius
flat plate boundary layer was obtained only very recently. Thus an
examination of the incompressible case appears to be the logical first
step. Under the assumption of incompressible gas and the restriction

of evaporative mass transfer the rate of mass injection into the gas is
expected to be small. It will be shown that under these conditions the
exponential steady-state vclocity, temperature and concentration profiles
reduce to linear profiles. In addition to the assumptions outlined above
the classical assumption of parallel mean (or steady-state) flow is also
made. It is then possible to solve the governing equations in a closed
form.

The present work is an attempt to determine a qualitative and
quantitative estimate of the influences of mass transfer on the liquid
film stability problem. This endeavor is pursued with the intention of
producing a useful analytical framework whi. i can treat such interesting
aspects as (i) amplification and phase velocity curves (ii) neutral
stability curves (iii) stress, temperature and concentration pertur-
bations at the interface and (iv) energy transfer mechanisms. The
analysis presented here departs from the customary assumption of
neglecting the instabilities in gas, which amounts to ignoring the

eigenvalue in gas disturbance equations. The consequences of

relaxing this assumption are carefully examined.




1.2 Review of Literature

It has been recognized for a long time that waves are initiated
on a liquid surface due to some kind of instability. The growth or
decay of these waves depends on whether energy is transferred to or
removed from them. Hence the study of mechanisms of energy transfer
has received considerable attention in the literature. Ursell1 pro-
vides an excellent survey of wind generated waves on deep water. A
2,3

widely respected theory of wave initiatiou is due to Miles He

proved that the rate of energy transfer to a wave of speed c is pro-
portional to the profile curvature - U'"(c) in the gas. This theory
predicts exponential wave growth whereas experiential observations
show that the initial wave growth is linear. It was Phillips4 who
explained the initial linear wave growth by proposing a resonance
mechanism between turbulent pressure fluctuations and interface dis-
turbances. A combined Miles-Phillips5 theory provides a very good
qualitative description of wave initiation and growth. Lighthill6
has offeréd a remarkable physical interpretation of Miles' theory.
There are three principal types of instabilities which are of
interest in interface stability problems. These are discussed below
and the relevant literature is reviewed.
(i) Tollmien-Schlichting Instability:

The Tollmien-Schlichting mechanism has been studied extensively

in connection with the stability of laminar boundary layers (Ref. 7).
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This instability is the result of continual energy transfer from the

mean flow to the disturbance. Benjamina’g, Landahl10 and Skripachev11

investigated the stability of laminar boundary layers over flexible

surfaces. Their analyses predicted three different stability modes,

viz. modified forms of the Tollmien-Schlichting mode, gravity waves

(body force instabilities) and Kelvin-Helmholtz instability. The

- latter two types will be described shortly. In recent years the higher

stability modes associated with the incompressible, laminar flat plate
13

boundary layer have been obtained by Gastor and .‘ordinson12 and Mack .

Mack's calculations show that the number of eigenvalues is finite for

a velocity profile which is sufficiently smooth at the outer edge of
the boundary layer. This work, along with the analysis of DiPrima and
| Habetlerlé, shows that in a finite interval there exists an infinite 3

15,16 and Deardorff17

discrete eigenvalue spectrum. Gallagher and Mercer
examined the eigenvalue spectrum of a plane Couette flow and concluded
that it is stable to infinitesimal disturbances. The stability of a

plane Couette-Poiseuille flow with uniform cross flow has been inves-

tigated by Hainesls.

(ii) Instability due tc shear and pressure perturbations at the inter-
foce:
Small wavy disturbances on the interface become unstable when

pressure and shear perturbations overcome the stabilizing effect of

gravity and surface tension. A special case of this instability

mechanism is the well-known Kelvin-Helmholtz instability (Ref. 19)

} between two incompressible, inviscid fluids in parallel motion. Mile320
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generalized this simple case to parallel shear flows. In a classic
paper Benjamin21 presented results for pressure and shear stress per-
turbations exerted by a viscous incompressible fluid on a wavy wall.
He considered the cases of rigid, flexible yet solid, and a completely
mobile wavy wall. In the course of his investigation he also laid
down the requirements under which a moving wavy interface could be
approximated as rigid. These results were applied by Craik22 to
wind-generated waves in thin liquid films. He discovered that the
dominant instability mechanism in thin films is due to shear pertur-
bations. Lighthillz3 analyzed the shear and pressure perturbations
exerted by a viscous compressible gas on a rigid wavy wall neglecting
the effects of heat and mass transfer at the wall. This work was
amplified by Ingerz4 to include heat and mass transfer effects.

(1ii) Rayleigh-Taylor instability:

This instability is due to body forces pointing from the heavier
fluid to lighter fluid (Ref. 25). The problem of liquid film stability
in a body force field was solved by Nayfeh and Saric26.

Several investigators have studied the linear stability of
liquid-gas interface under various conditions and a concise summary of
their works is provided in Table I at the end of this chapter. It
should be noted that the liquid motion is treated as incompressible and
laminar in all cases, and effects of mass transfer are neglected unless
mentioned otherwise. Major features of the present work are also listed

in this table to facilitate comparison with other investigations.
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1.3 Outline of Present Work

It was pointed out in the previous section that steady-state expo-
nential mass transfer profiles reduce to linear profiles without mass
transfer when the evaporation rate is small. This suggests that the
zero mass transfer problem witb linear profiles be solved first. Since
the zero mass transfer problem is relatively simpler, the experience
gained in its formulation would be very useful. Also, this problem can
be used to evaluate the importance of the often-made assumption of
neglecting gas instability. The formulation of the zero mass transfer
problem is described in Chapter II and its solution is presented in
Chapter IV. Two methods of solution have been used - (i) a small pertur-
bation scheme which yields one eigenvalue in the long wavelength approx-
imation and (ii) exact analytical soluticn for arbitrary wavelengths.

The mass transfer formulation is considered in Chapter III and
follows closely the procedures of Chapter II. Chapter V is concerned
with the solution of the mass transfer problem. All the important steps
of mathematical analysis are inciuded in Chapters II through V and the
details are confined to the Appendices. This was done in order to
preserve clarity of the presentation. The results of numerical com-
putations are given in the form of amplification and phase velocity

curves in Chapter VI. The conclusions derived from the present investi-

gaticn are summarized in Chapter VII.
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FORMULATION OF THE ZERO MASS TRANSFER PROBLEM
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2.1 The Purpose of Solving the Zero Mass Transfer Problem

1. It was mentioned in Sec. 1.2 that different types of mecha-
nisms have been proposed to explain the transfer of energy to the
surface waves. These meci.anisms are briefly summarized below.
(1) Energy transfer from the mean velocity profile in the gas:
This mechanism was proposed by Mile52 and Benjamin21. The
critical point (y-location at which the disturbance phase speed
equals the u-velocity component) of the velocity profile lies
within the gas boundary layer. Energy is fed from the mean flow
to the interface disturbance continually with time resulting in a
Tollmien-Schlichting type of instability. However, the experi-
ments of Cohen anrd Hanratty30 and Plate, et al.31 indicate other-
wise.
(ii) Energy transfer from the mean velocity profile in the liquid:
The critical point lies inside the liquid layer and again the
energy transfer to the interface occurs as a result of Tollmien-
Schlichting instability. This mechanism was investigated by Feld-
man and Mile529 for large liquid Reynolds numbers. In this mode
the phase speed c. is less than the interface velocity (cr < uif)
and these waves are sometimes referred to as 'slow waves.' These
waves have been observed in the experiments of Craik22 and Saric
and Marshall34. However, Cohen and Hanratty reject this mode of
energy transfer because they did not observe slcr waves in their

experiments. One reason may be that they did not use sufficiently

small thicknesses in their work. Saric and Marshall34 mention
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t. 2t the occurrence of slow waves may be due to nonlinear effects.
(iii) Energy transfer due to pressure and shear perturbation
exerted by gas on the disturbed interface:

The classical Kelvin-Helmholtz stability is a special case
of this mechanism. Cohen and Hanratty30 proposed that this is the
sole mechanism of energy *iansfer. They found that for 'fast'
waves (critical point inside the gas or £l @ uif) or 'thick' films
the component of pressure perturbation in phase with the wave ele-
vation are dominant. Craikzz, however, discovered that for 'slow'
waves on very thin films, the pressure perturbation component in
phase with the wave elevation and shear perturbation component in
phase with the wave slope, are dominant.

Another model based on energy transfer due to pressure vari-
ations at the interface is Jeffrey's1 sheltering hypothesis. It is
improoable that the mechanism of sheltering (i.e. drag force exerted
on a wave due to flow separation near the wave crest) will be impor-
tant in the case of waves with amplitudes very small compared to
their wavelengths. The latter is assumed in all the linear analyses
including the present work.

(iv) Energy transfer due to a resonance mechanism between turbulent
pressure fluctuations and surface disturbances:

Proposed by Phillipsb, this mechanism is believed to be respon-
sible for initiation of short waves on the interface. Cohen and
Hanratty30 rule out this mode on the basis that a smooth liquid sur-

face is ‘'observed' even in the presence of turbulent flow (not a very
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convincing argument at all!). Plate, et al.31 obtained turbulent
pressure fluctuations at the liquid surface indirectly through the
measurement of longitudinal velocity fluctuation u'. Their experi~
ments come closest to verifying Phillips' theory. They conclude

that the resonance mechanism does not appear to be significant and
this may be a justification for neglecting turbulence interactions

in the present work. One of the aims of solving the zero mass trans-
fer problem is to try to shed some light on the mechanisms of energy
transfer.

2. As seen earlier in Sec. 1.2 some investigators have a priori
neglected the instability in the gas. For instance, Nachtscheim33
and Starkenberg35 observe thac c/ue<< 1 for inviscid supersonic
external flow, where c is the phase velocity of the disturbance

and ug is the gas velocity. Bordner37 presents an order of magni-
tude argument for neglecting c¢ in the gas disturbance equations when
the external flow is viscous and compressible. In his work on cross-
hatching Inger24 also assumes that the interface behaves like a rigid
wavy wall relative to the gas flow. Craik22 analysed thin liquid
films using the pressure and shear perturbations derived by Benjamin
for a rigid wavy boundary. This amounts to having the critical

point located at the wavy boundary and it also means that the phase
speed c is negligible in the gas disturbance equations. It ought to
be mentioned at this point that the assumptions (a) the phase speed
relative to gas speed 1s negligible (b) the interface is steady and

rigid for gas disturbance equations and (c) the critical point in the
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gas is located at the wavy boundary, are all equivalent.

Craik22 indicates that even for a viscous incompressible gas
c/ue<<1 is sufficient to make the above assumption (which is under-
standable in the case of an inviscid compressible gas). It is ques-
tionable how Craik's assumption (i.e. c/ue<<l) satisfies the require-
ment laid down by Benjamirgl that

mc
:;F(O) << 1 (2.1.1)

in order to make the rigid wavy wall assumption. In the last inequa-
lity ¢ = c/ue, u'(0) is the non-dimensional slope of the velocity

profile evaluated at wall and

o = [aRu'(0)]}3 (2.1.2)

where R is the gas Reynolds number based on some characteristic
thickness and o = 2n/A, A being the wavelength of the rigid wavy wall.
Thus Benjamin's criterion requires that

[aRu' )13 €/¥e <1 (2.1.3)

u'(0)

It is clear from Eq. (2.1.3) that for a low speed (incompressible)
gas with moderate Reynolds number and sufficiently large a(small
ripples on the interface) Benjamin's criterion may not hold. Hence
c/u, may be very small compared to unity but still Eq. (2.1.1) could be

violated and consequently, a rigid wavy interface assumption cannot

be made. An illustrative example will be coasidered in Chapter VI.

S PTINST




In the present analysis the external gas is viscous and incom~
pressible and hence the rigid/steady interface assumption is not made.
Hence phase speed terms appear in both the gas and liquid disturbance
equations. The stability problem is solved both with and without this
assumption, thus providing a method of checking its validity.

i An incompressible, viscous, laminar flow of gas with constant
properties over an incompressible laminar viscous liquid is considered.
A turbulent velocity profile in the gas, however, can be treated as a
'quasi-laminar' profile with augmented viscosity. The assumption of
laminar flow simp.ifies the analysis greatly but it is not very
realistic. In the turbulent case it would imply that the laminar
sublayer be large compared to the disturbance wavelength -- a require-
ment rarely met in practice.

The zero mass transfer problem is solved for a linear steady
state velocity profile in both gas and liquid. The linear profile in
the gas can be justified to some extent in the laminar case but it may
be a poor approximation in the turbulent case. The laminar flow and
linear velocity profile assumption can be justified for the liquid
since the liquid Reynolds number is usually small and since Craik's
experiment confirms a linear profile. The linear velocity problem is
solved in the present work due to the following reasons:

(i) the Orr-Sommerfeld equation has an exact solution.
(ii) the linear velocity profile is the simplest viscous profile
which represents a physically possible flow.

(iii) the linear stability of plane Couette flow has been extensively
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studied (e.g. Gallagher and Mercerls, Deardorff17) and it has been
found to be unconditionally stable.

(iv) The exponential steady-state velocity profiles with mass trans-
fer reduce to linear profiles for small (but non-zero) rates of mass
transfer. This last reason, in particular, provided motivation for
studying the zero mass transfer problem with linear steady-state

profiles.

2.2 The Steady-State Problem

As mentioned in Sec. 1.1 the steady-state or the mean flow is
assumed to be incompressible and parallel (i.e. %;-E 0 and vy =V, = 0).
The liquid motion is assumed to be a plane Couette flow and hence it is
an exact solution of the full Navier-Stokes equations. The gas motion,
on the other hand, is assumed to be a boundary layer flow which is
approximately parallel.

Let h and § be the height of the liquid Couette flow and the
boundary layer thickness respectively (Fig. la). The gas Prandtl
number Pr2 is assumed to be unity so that the thermal and velocity
boundary layer thicknesses are identical. Let subscripts 1 and 2
denote the liquid and gas respectively. The steady-state governing

equations are --

Liquid:

1. x-momentum
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E y L (2.2.1)

2. y-momentum

; - . 0.8 (2.2.2)

{ 3. Energy

1 B S (2.2.3)

g Gas:
3

4, x-momentum

d262
=0 (2.2.4)

5. y-momentum

—2 a9 (2.2.5)

6. Energy

; d2i2 dﬁz 2
s SRR W (2.2.6)

These equations show that all the flow quantities vary only with

respect to the vertical co-ordinate y. In Eq. (2.2.6) the viscous

. dissipation term is neglected consistent with the assumption of




incompressibility. It may also be mentioned here that continuity

: equations for the gas and liquid are identically satisfied due to the

—

parallel flow assumption. Eqgs. (2.2.1) - (2.2.6) are six equations

I

in six unknowns U;, U2, P1, P2, T1, Tp. The combined order of this

system is 10 and an equal number of boundary conditions is required k

é for a unique solution. These conditions are --
1. No slip at the wall

uj(-h) =0 (2.2.7)
2. Boundary layer edge ~ondition on velocity

uy (8) = o, (2.2.8)
3. No slip in tangential velocities at the interface

u;(0) = uz(0) (2.2.9)

4, Balance of shear stresses at the interface

d&l du,
Bl s = M2gs |y = 0 (2.2.10)
5. Constant temperature or adiabatic wall
F,(<h) = Ty or o0 - 0 (2.2.11)
dy [y=-h
6. Boundary layer edge condition on temperature
! To(6) = T (2.2.12)

e




10.

Energy balance at the interface
: dT,
ldy

= ko —
y=0 "2dy|y=0
No jump in temperature at the interface
T1(0) = T2(p)
Boundary layer edge condition on pressure
D %
Py(8) =P,

Balance of normal stresses at the interface

PL(0) = P,(0)

(2.2.13)

(2.2.14)

(2.2.15)

(2.2.16)

The solution of Eqs. (2.2.1) - (2.2.6) subject to (2.2.7) -

(2.2.16) is

Liquid velocity profile

up Mz g 1+%
. w6
e 1 U2h
l+'—'g
1
Gas velocity profile
u
" 2 h
Tt
skt -
u
e 1aeiss
up 8

Liquid pressure profile

(2.2.17)

(2.2.18)

(2.2.19)
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: Gas pressure profile
( ")
| By = Bg (2.2.20)
| Liquid temperature profile
;
i
i
' ~ 1_3‘1 .'I_“!..’..If.&.‘l
11 k?.h Te y s 'kld
f ey + constant temperature wall (252, 21)
' T k, § k h k
e 1 2 h 2 h
‘ beers 1t py
1 1
= 1 adiabatic wall (2.2.22)
Gas temperature profile
R L N
2 o T S
T = ” %-+ m constant temperature wall (2.2.23)
LR ¥l
kl 8 kl §
= 1 adiabatic wall (2.2.24)

Interface quantities are obtained from Eqs. (2.2.17) - (2.2.24) by

putting y = 0. Thus

Interface velocity Y2 b
u b, 6
if _ i {2.2.25})
Ye Y2 h
1+ —= —
s |
Interface pressure
P
e+ AP (2.2.26)




Interface temperature

T

R ')
Tif Te kl §
= m” constant temperature wall (2.2.27)
e 1 2 b
+—k———
1
= 1 adiabatic wall (2.2.28)

2.3 The Unsteady Problem -- Governing Equations

When the steady interface configuration of Sec. 2.2 is disturbed
the resulting unsteady, two dimensional, incompressible motion is
governed by the following equations:

Liquid:

1. Continuity

du. ov.
1 1
% + e 0 (2.3.1)
2. x-momentum
3T 9Ty auy 1 P azul azﬁl
—a-—+ul-3—+vl-a——=——f—-a—x—+\)l + (2:3.2)

+ — (2.3.3)




28

4. Energy (static enthalpy form)

ah. 3h ah, P P P
N R R R |
°1[at il = +"1ayJ - g i B
690, - BT, o
ax? dy?

Combining this equation with the equation of state for the liquid ;
By s N 7y
and neglecting viscous dissipation and pressure gradient terms it can

be shown that (Appendix A)

9T aT. aTJ 32T, 32T
1 ot 1 A 1 1 oL
e e s w K Soo e (2.3.4)
17p1 (ot 1 3x 1 3y 1[3x2 3}'2
Gas:
5. Continuity
au, IV,
2 2
ax + ay = o (2.3-5)
6. XxX-momentum
au ou, du dp 2%u, a%u
atz+iza2+Vzaz=_;__a_x_2+\,2 2, 2 (2.3.6)
X Y Pa ax 2 py?
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T ee——

7. y-momentum :

v, v, v, 3p. 3%y, 3%V, 3
R SRS L 1 P 2 2 ]
T, e+ V) e - 2 4y, | —E ¢ —2 (2.3.7)
ot 2 9x 2 dy Py dy 2 %2 3y2
8. Energy (static enthalpy form) ;
1
oh, oh, oh,] ap. p. ap.
AT T L S ) 2
Palat * Y2 =& +Vzay]“ 58 T Y2 %x T V2 5y
a2r, 2T, T
+ k, + + 1,0, (2.3.8)"'
ax2 dy?

combining this equation with the relation for an ideal gas

(ah/aT)p =c,

and neglecting pressure gradient and viscous dissipation terms the

result is

c —= 4+ T _.._2+V _~_2.=k2 +——-—g- (2.3.8)

It is assumed that the unsteady motion is confined to the region
-h <y <8, i.e. the steady-state gas boundary layer thickness § is

unaltered. This is justifiable in view of the assumption of small

perturbation motion to be introduced later (Sec. 2.5).
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2.4 The Unsteady Problem -- Boundary Conditions

Egs. (2.3.1) - (2.3.8) form a system of elliptic partial
differential equations requiring boundary conditions to be specified
along the entire boundary of the domain in (x,y) plane. However, it
will be apparent in Sec. 2.6 that the unsteady perturbations are sinus-
oidal with respect to the x co-ordinate and hence bounded. Thus boun-
dary conditions need be specified only along the y co-ordinate direction
and along the interface. In this section the appropriate boundary

and interface conditions are developed.

1. No slip at the wall
u;(,y,t) =0 , y=-h (2.4.1)

2, Boundary layer edge condition on the u-velocity component

Ez(x,y,c) =u,,y=56 (2.4.2)

3. No slip in the tangential velocity at the interface (Fig. 2)
Let Vﬁ and VR be the liquid and gas velocity vectors at point
1 2
p relative to the interface. The condition of no slip requires that

the components of Vk and Vk along the interface be continuous, i.e.
1 2

where ds is a directed line segment of the interface at point p. Now,
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where Vl and V2 are liquid and gas velocity vectors respectively

relative to a stationary observer. Vif is the interface velocity

vector with respect to a stationary observer. Hence,

( e Vif) - ds = (V2 - Vif) - ds
or
Vl ds = V2 ds
Since
v, = (,v)) , Y, = (U,,v,) and ds = (dx,dy)
uldx + vldy = uzdx +v2dy

s (V=

Sl S g W

Wiy =y S0 =00 &

If y = n(x,t) is the equation describing the unsteady interface, the

above relation gives

on

% n(x,t) (2.4.3)

u, ~u, = (v1 - vz) at y

———————

Lo g
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For a flat interface T 0 and (2.4.3) reduces to (2.2.9).

4. Balance of shear stresses at the interface

Ty =T, ony = n(x,t)

It can be shown by considering the equilibrium of a triangular

element at the interface (Appendix B) that

Thus shear balance requires that

~=pig +
l+nx2 oy 9x g

i = =y = R
1 nx [auz asz_ 2u2nx [:22 asz

= + — - e | ——— - ——
Yoty 2 ax by 2 ax oy
X
on y = n(x,t) (2.4.4)
For a flat interface ™ o, Vl = VZ = 0 and Eq. (2.4.4) reduces to
Eq. (2.2.10).
5. Constant temperature wall
:f-l(x,y,t) i O e

or Adiabatic wall (2.4.5)

9T, (x,y,t)
3y =0, y = -h
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é 6. Boundary layer edge condition on temperature
Té(x,y,t) = Te, y=26 (2.4.6)

Je s 7. Energy balance at the interface

1 9T, oT
:f Evgur T hagn . P e
or
klv 3 kZVT2 *n

where n is the unit normal to the interface at any point. Now, if the

interface equation is written as

F(x,y,t) =y -n(x,t) =0

then,

and henage

k VT, * VF = k,VT, ° VF on F=0 or y=n(xt) (2.4.7)

Expanding (2.4.7)




Shesdi

using the relation F = y - n(x,t),
aT. aT. aT aT,
kl[- __l n + -—l} = kz{_ ._Z n + __EJ

9x X dy

For a flat steady interface [—; = 0, Do 0] the above equation
reduces to Eq. (2.2.13)

8. No temperature jump at the interface
Ti(x,y,t) = Té(x,y,c) on y = n(x,t) (2.4.8)
9. Boundary layer edge condition on pressure
pz(x,y’t) = pe at y = ¢ (2.4.9)

10. Balance of normal stresses at the interface
Referring to Fig. 3a it is seen that the discontinuity in the
normal stresses across the interface must be balanced by surface

tension. Thus

on y = n(x,t)

Q
[N
1
Q
=
i}
ol

where T is the surface tension and R is the radius of curvature. Now,

for a surface that is concave downward, the curvature is given by

ke AN
3/2

2

(1+nx)

|-

Also, as shown in Appendix B, the expression for normal stress is
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2y 3u av %M (3u , av g
N e A 3y T ax ;
. 1+n§ 1+n§ %
Finally, the normal stress condition becomes ‘
'n du. du v, ov.

XX o = 2y . 4nd e o R ot e :
T~ @ R - 2m | C At W 5 :
[I+n2J { 3
x .
7w, o, 7w, v |

2 2 1 1

¢ an u2(3)' = ]- 1 3y T

at y = n(x,t) (2.4.10)

In the steady state case Eq. (2.4.10) reduces to Eq. (2.2.16)
The boundary conditions developed so far, (2.4.1) through

(2.4.10), are the same as those for the steady-state problem, viz.

B b o8 SN S

(2.2.7) through (2.2.16). 1In the steady-state case there were six
unknowns Gl, 52, 51, 52, il’ and iz. In the unsteady case, however,

there are eight unknowns,'ﬁl,'ﬁz,'ﬁl,'fz,‘Tl,'Tz,'Vl and Vé. Thus"x?1

and v, are the two additional unknowns which appear as second

2
derivatives with respect to x and y and also as first derivatives with

it s g pstooiss Mo ot

respect to time (Eq. (2.3.3)). As will be shown in Sec. 2.6 the x and
t dependence can be eliminated by assuming a suitable form of interface

configuration. Thus one need be concerned only with the boundary

| conditions on Vi and Vé in the y direction. Since Vl and Vé appear as

second derivatives w.r.t. y in Eqs. (2.3.3) and (2.3.7), four
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conditions are required on ;i and ;E. These conditions are, the wall
condition on ;i, the boundary layer edge condition on ;é and two
interface matching conditions. These four conditions are derived below.
11. No penetration condition at the wall

In the absence of any mass transfer through the wall the no

penetration condition is
;i(x,y,t) =0, y=-<-h (2.4.11)

12. Boundary layer edge condition on the vertical velocity component Vé

The flow configuration of Fig. 1 behaves as if it 1s bounded
between two walls at y = ~h and y = 8§ even in tune disturbed state, and

this would require that the ;2 be zero at y = §, i.e.
;é(x,y,t) =0,y=28§ (2.4.12)

13. Kinematic condition on ;i at the interface

Since there is no mass transfer across the interface, the no

penetration condition (commonly referred to as the kinematic condition) at

the deformable interface reads

D.F

Fx*b on F=0 & y = n(x,t)

where (2.4.13)

T TR NI i s s
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14. Kinematic condition on ;E at the interface.
Similar reasoning as above gives the no penetration condition on

the gas side as

Bg_ =0or F=0o0ry-=nx,t)
2t
where (2.4.14)
D
2.3 = id i g
Bt ot ' "23x ' V2 %y

In the steady-state case the boundary conditions (2.4.11) through
(2.4.14) are identically satisfied.

Eqs. (2.3.1) through (2.3.8) supplemented by boundary conditions
(2.4.1) through (2.4.14) complete the general formulation of the

unsteady problem. It is noted that this problem is highly nonlinear.

2.5 Small Perturbation Formulation of the Unsteady Problem

The solution of the unsteady problem in its most general
nonlinear form presents a formidable task and hence a small perturbation
solution is attempted. The unsteady motion is viewed as a small per-
turbation on the steady-state problem of Sec. 2.2. Accordingly, every
dependent variable is written as a straight-forward expansion of the

form

T, (x,y,8) = q (9) + sqy; (x,y,t) + s2q,,(x,y,t) + -—- (2.5.1)
i=1,2

oo e ol i+ Skl et

PG NRY e
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where s << 1 is a dimensionless small parameter. It may be recalled

bere that the steady-state problem has only one independent variable y.
Substituting the above expansion into the governing equations (2.3.1)
through (2.3.8) it is found that the zeroth order problem is given by the
steady-state governing equations (2.2.1) through (2.2.8). The first

order problem is given by

Liquid:
ou v
% 1 S P (2.5.2)
X oy
u du ap 3%u 3%y ]
5 1 5 Y B T [ 11 1,
Z. SE——-+ uy 3;——-+ uivy, = - e + 121 + {2.5.3)
1 ax? ay?
v L v p 32%v 32v
3. -——atll +u; axll e 3 - 2 L g (2.5.4)
Ry A8 ax2 ay2
JT T k, (92T 3T
&, 2L 6t By w e PR (2.5.5)
ot 1 3x 1V11 plcpllaxg ay?
Gas:
du v
¥, 2Ly 2o g (2.5.6)
X 3y
du du X ap 32u 32u
6. B s ettty ol Bl LB, B g5
at 2 3x 272 b, 3X 2|, 2 252
v av ap 32v 32v
7. wtlyg —Eh oL £, S 4 il (2.5.8)
ot 2 3x p 3y Zlaxz 3y2
aT aT 2 k, (22T 32T
8. 2,3 2L , fiy,. - 2 [ = = (2.5.9)
at 2 3x 2721 pchz laxz 3y2
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where primes denote derivatives w.r.t. y.

The next step is to substitute the expansion (2.5.1) into the
boundary conditions (2.4.1) through (2.4.14). It may be recalled
that the interface boundary conditions (2.4.3), (2.4.4), (2.4.7),
(2.4.8), (2.4.10), (2.4.13) and (2.4.14) are applied at the unknown
interface y = n(x,t). Therefore, consistent with the small pertur-
bation approach, it is assumed that n(x,t) is a small disturbance

on the steady-state value n = 0 and that it can be expanded as
nx,t) = en (x,t) + s?n,(x,t) + ——- (2.5.10)

Since n(x,t) is small, it is permissible to transfer the above-~
mentioned boundary conditions from the unknown interface y = n(x,t) to
the known steady-state value y = 0, again consistent with the small
perturbation approach. This is accomplished through a Taylor series

expansion about y = 0,

aq 3%q 2
— - i
q, (x,y,t) = q,(x,0,t) + ly + i do fp omm 4 w12
1 i dy | 3 1 2
=0 3}’ y=0

Or for y = n

quG6n,t) = 9, (x,0,8) + 5| n Lt ———i=1,2 (2.5.11)

g a%g 2
+ il

where n(x,t) is given by (2.5.10).
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Substituting Eqs. (2.5.10) and (2.5.11) into the boundary

o

conditions (2.4.1) through (2.4.14) and collecting coefficients of s,
it can be verified that the zeroth order problem is given by the
steady-state boundary conditions (2.2.7) through (2.2.16). The first

order problem is given by

1. up;, (x,y,8) =0, y = -h (2.5.12)
e uy; %,7,8) = 0, y = 6 (2.5.13)
3. Uy =8y, = (@] ~udny , y=0 (2.5.14)

du ov ou v
21 21 11 11 iy ~n
U2{ + J “]J]_{ + ] = (ulul’_ Uzu'z )“1’ Y =0(2.5.15)

dy ox dy 9x
5- Tll(x,y,t) = 0, y == —h
o (2.5.16)
é )
j Ey__(xs)'»t) =0, y=+h
i 6. T21(x,y,t) =0, y=2¢6 (2.5.17)
| aT 3T
! 21 o 11 4 T m o1 e
? Vit kzs;—— k13§"" (le1 k2T2 )nl, y =0 (2.5.18)
| 8. B = By = G =100, g =0 (2.5.19)
i
! 9. Py (Xsyst) = 0, y =6 (2.5.20)
v v ]
~ ~ 21 ¥
10. M., = (Pyy = Pqq) + (p! = pIn, = 24 - u
1xx 21 b 2 b il 2 3y 1 3y (2.5.21)
y =20
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11, vll(x,y,t) =0, y=-~-h (2.5.22)
2. v21(x,y,t) =0, y=3$§ (2.5.23)
1
13, Met MY "V S 0, y=0 (2.5.24)
14, Nyg # My Uy = ¥gy =0, ¥ = (2.5.25)

An inspection of Eqs. (2.5.2) through (2.5.9) and (2.5.12)
through (2.5.25) makes it clear that the small perturbation assumption

resulis in linearization of the unsteady problen.

2.6 Travelling Wave Solution of Small Perturbation Equations

The small perturbation equations (2.5.2) - (2.5.9) and the
boundary conditions (2.5.12) - (2.5.25) exhibit two important properties,
(1) linearity and (ii) the coefficients of the unknowns and their
derivatives are either constants or functions of y at most. The latter
property is a consequence of the steady-state parallel flow assumption.

These observations suggest a solution by separation of variables of

the type

q; (ey,t) = g (y) f(x,t), 1= 1,2 (2.6.1)

A convenient functional form of f is chosen in what follows.

In the boundary conditions of Sec. 2.5 there appear terms in
n and its derivatives. Now nl(x,t) is an unknown and its suitable
form must be assumed subject to the condition of boundedness w.r.t.

x and t (see Sec. 2.4). Suppose that initially the interface is




disturbed such that it is sinusoidal in form, thus

ikx

n(x,0) = she (2.6.2)

where s<<1 is the dimensionless small parameter encountered earlier

in Sec. 2.5 and h is the liquid depth. Eq. (2.6.2) implies that

n/h << 1, i.e. the amplitude of the sinusoidal disturbance on the
interface is much smaller compared to the liquid depth. k is the wave

number of the disturbance given by

27

k = o (2.6.3)

where A\ is the disturbaunce wavelength.

Now, Eq. (2.6.2) suggests a travelling waveform for n(x,t) -

BlEt) = mhetUE UEE L o (TEGREE) (2.6.4)
where
c =-% (2.6.5)

is the speed of propagation of the wave disturbance and w is the

frequency.

It is clear from the comparison of Eqs. (2.6.4) and (2.5.10) that

ny(x,t) = pel(Xwt) (2.6.6)

It is now obvious that in Eq. (2.6.1)

f(x,t) = ei(kx—“t)

resulting in the solution form
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i (kx-wt)

4, &x,y,t) = q,(y)e i=1,2 (2.6.7)

It may be mentioned at this point that the work of Secs. 2.5 and
2.6 is equivalent to assuming the following form of solution from the

outset

1 (kx-wt)

g (x,y,0) = q () + sq (y)e +0(s?) 1 =1,2  (2.6.8)

Substitutior of Eqs. (2.6.6) and (2.6.7) into the governing

equations (2.5.2) - (2.5.9) gives the result

Liquid:
T iku1 + vi =0 (2.6.9)
2 ikp, 3
2. iwul + ikulu1 + viug o + vl(u1 k ul) (2.6.10)
1
3 -iwv, + ikv.u =--pi+v(v"-k2v) (2.6.11)
g 1 171 p1 A il e
= = kl 2
e ' U "o_
4, inl + ileul + vlT1 = (Tl k Tl) (2.6.12)
17pl
Gas:
v =
e iku2 + v2 =0 (2.6.13)
ikp 2
- = at e — LA
6. 1wu2 + iku2u2 + vouy o + \)z(u2 k u2) (2.6.14)
1
- : . e 2 = el )
7 iwv2 + 1kv2u2 = o2 + v2(v2 k VZ) (2.6.15)
k2
- v - " 2

8. tuT, + 1kTyu, + v,T) ST (15 - k*T,) (2.6.16)




boundary conditions (2.5.12) - (2.5.25) gives the result

1.

10.

11.

12,

13.

ul(Y) - 0, y = -h

uz(y) =

u, - u

2 1

uz(u; + ikvz) - pl(ui + ikvl) = (ulﬁg - uzig)h,y =0

T, (y)
or

T, (y)

0, y=¢6

= (u; - updh, y = 0
0, vy =-h
0, y =-h

T,(y) =0, y = §

g ki LR ™ it =
kT kT (k7] ~ k)b, y = 0

2 2 11

Py (y) =

2 SU o
rk“h + (p2 pl)h + (p2

v, ()
vz(y)

ikh(ﬁl -

o m =

Ty - Th, y =0

0, y=2§

. I O '
Py) - 2(uyvh = uyvy),

y =4

= 0’ y = -h

= 0’ y = 1)

Wy =

R R

(2.

(2.

(2.

(2.

(2.

(2

(2.

(2.

(2.

(2.

(2.

(2.

(2.

Similarly, substitution of Eqs. (2.6.6) and (2.6.7) into the

6.17)

6.18)

6.19)

6.20)

6.21)

.6.22)

6.23)

6.24)

6.25)

6.26)

6.27)

6.28)

6.29)

PR ot oo A (S TN NG ST o Sty BRSNS
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o w
14. ikh(u, = ) - v, = 0 (2.6.30)

Thus the original unsteady problem in three independent variables
X, y and t has been reduced to a problem in one independent variable y.
The total order of the system of Eqs. (2.6.9) - (2.6.16) is 14 and
there are 14 boundary conditions (2.6.17) - (2.6.30), thus the

resulting problem is mathematically well-posed.

2.7 Reduction to Four Dependent Variables

There are eight unknowns Uys Uy, Py Py Tl’ T2, Vi» Yy in the
governing equations and boundary conditions of the previous section.
Following the standard procedure in boundary layer stability theory
Py is eliminated between Eqs. (2.6.10) and (2.6.11) by differen-
tiation and uy is eliminated from the resulting equation through Eq.
(2.6.9). This manipulation results in a single ordinary differential
equation in vy- Identical operations on the gas side equations
(2.6.13) - (2.6.15) yield an ordinary differential equation in vy

Thus the system of governing equation reduces to the following --

Liquid:
1V_ b e L - _Z_lh "o 2 ~ - _ ~n
R A = [(vl K2v)) (@ - w/k) ulvl] (2.7.1)
2 1T, + 1ikT u, + v.T, = 1 (. - k21,) (2.7.2)
g 1 s MR T s 1 1 b
I'pl
v _ 52 by, = ik - Ko Ylh. = - g
3. vy 2k v, + k v, Vo [(v2 k vz)(u2 w/k) u2v2] (2.7.3)

e ¥




ks

p~C

= - Y m HE 2
&, fwT, + ikT,u, + vzi‘2 (Tz k 'r2)

27°p2

(2.7.4)

Eqs. (2.7.1) and (2.7.3) are the well-known Orr-Sommerfeld equations.

Notice that the order of the system has been reduced from 14 to 12 due

to elimination of p, and Py
In boundary conditions (2.6.17) - (2.6.30)u1, Uy, Py and
eliminated using Eqs. (2.6.9), (2.6.10), (2.6.13) and (2.6.14).

instance, solving for u, and u, from Eqs. (2.6.9) and (2.6.13),
1l 2

i |

s Bl

.

Solving (2.6.10) for Py and using (2.7.5)
V'
Aiv1
ik

H
_ 1 o 124" = i
P = —---kz(v1 kev; ) + (u; = w/k) e

Similarly, from (2.6.13) and (2.6.14)

t '

p 0,V 0, V.U
L e ¥2.. Wi
P, = 2(v2 k VZ) + hzi—(uz w/k) Tk

k

Substituting Eqs. (2.7.5) - (2.7.8) into the boundary

conditions (2.6.17) - (2.6.30) the results are

L ¥y * 0, y =-h

2. v!=0,y=26

p, are

For

(2.7.5)

(2.7.6)

(2.7.7)

(2.7.8)

(2.7.9)

(2.7.10)

P
4

ot e PR

oonecn
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i

=tk 2 ki o 4
y 3. vi =V, ikh(ui ué), y=20 (2.7.11)
4. by (V) + k2v)) = p, (vl + KPv,) = dkh(upuy - uou), y = 002.7.12) |
i 5 By =0, 3= b :
s
or (2.7.23) 3
T! =0, y = -h ]
6. B, =105 3 =t (2.7.14)
] (e L “n__ it - =
y k, Ty = kT; = (T) ~ kyTy), y = 0 (2.72.15)
8. = (Ti - Té)h, y=0 (2.7.16)
1
Al
i 2 = = 1 Wt o 3,200y _ W 12t
15 9. 'k’h + h(p, - p;) + > [, Gy = K2v3) = py G = k2eg3]
H

+ 2 loylvyly = vy(@, = /K)} = p {vjuy - viGE) = w/k)}]

- 2(u2v5 - ulvi) =0aty=0 (2.7.17)
10. ¥y =0, ¥ = ~H (2.7.18)
11. ¥y = 0, y =26 (2.7.19)
12. v; - ikh(ﬁl -w/k) =0, y=0 (2.7.20)
13. ¥, = ikh(ﬁz -wfk) =0, y=0 (2.7.21)

Several important observations can be made at this stage.

(1) The number of boundary conditions has gone down from
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14 to 13. This is because p, no longer appears as an unknown in
Eqs. (2.7.1) - (2.7.4), consequently the boundary condition (2.6.25)
is superfluous. Thus for a 12th order system there are 13 boundary
conditions.

(ii) The governing equations (2.7.1) - (2.7.4) are homogeneous
in vis Tys vy and T,. The boundary conditions (2.7.9) - (2.7.21),
however, are not all homogeneous; e.g. Eqs. (2.7.11), (2.7.17),
(2.7.20) and (2.7.21). This fact is very significant.

(iii) It is possible to solve for vy and v, independent of
Tl and T2. For instance, Eqs. (2.7.1) and (2.7.3) can be solved
subject to the nine boundary conditions (2.7.9) - (2.7.12) and (2.7.17)
« (2.7.21). This means that the energy equation is decoupled from
the equations of motion. It will be shown in Chapter III that such
decoupling is not possible when there is mass transfer across the

interface. Once a solution for v, and v, is obtained Uy, u, and Pys Py

2
can be obtained from Eqs. (2.7.5) - (2.7.8), if necessary.

(iv) Suppose Egqs. (2.7.1) and (2.7.3) are solved subject to
the eight boundary conditions (2.7.9) - (2.7.12) and (2.7.17) -

(2.7.20) to obtain a general solucion of the form --

vl = glly;plspzpulyuzvhs‘Syrsue’mak] = gl[pl’OZ’ul’UZ’h'd’I"ue’w’k]

at the interface
and

V2 - gz[y;pl’DZ’ul'UZ’h’é’r’ue’w’k] = g2[plppzyulyuzlhla)r!ue’w!k]

at the interface




gk TS bl ORI . i 0 b 5

49

All the arguments of 8 and 8, except @ and k are fluid properties and
remnants of upstream history (h,¢ and ue) which are known for a given
problem. However, u and k are not independent -- they are connected
through the last boundary condition, Eq. (2.7.21). Thus this

equation is like a characteristic or frequency equation and in

dimensional form it is written as
G(plypzaulyuzvh)éuFaue,w:k) =0 (2.7.22)

In the present work, G will be called the characteristic function.

It is clear from {2.7.22) that given k, w is uniquely determined
(there may be more than one value of w) for a given set of parameters
and vice versa. In this sense the present problem is an eigenvalue
problem.

(v) Eq. (2.7.22) suggests the following method for investi-
gating the stability of the interface. Suppose that it is desired to
know whether the interface is stable with respect to a disturbance of
wavelength A. Given A (and hence k) it is possible, in principle, to
determine a set of values of w. These values of w will be, in general,

complex. Let w = wr + iwi. Then the equation of the interface

(2.6.4) becomes

n(x,t) = shéuitei(kx-wrt) (2:7.23)

Hence
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1f wy > 0 interface amplitude will grow exponentially with time,

i.e., unstable interface

If w, < O interface amplitude will decay exponentially with time, |
i.e., stable interface

If w, = 0 interface amplitude remains constant , i.e., stable

interface

Let Eq. (2.7.23) be rewritten as §

n(x,t) = shekciteik(x-crt) (2.7.24) ?

where

c = w/k (2.7.25)

Thus e, has the dimension of speed and it is referred to as the phase

speed. c, appears in the amplitude term and is called the amplification

i

factor.

2.8 Non-dimensionalization of the Eigenvalue Problem

The vertical co-ordinates in the liquid and gas are non-dimension-
alized with respect to the liquid depth and the boundary layer

thickness respectively. Thus

£ = %- (2.8.1)
n =§ (2.8.2)

The velocities on the liquid side are made dimensionless relative to

the interface velocity LT in Eq. (2.2.25) and the gas side velocities
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are made dimensionless with respect to the edge velocity u, Hence

the steady-state velocity profiles now have the form

Liquid velocity profile:
G{E)21+E ~1s580 (2.8.3)
Gas velocity profile:
G.(m) =3 g<n<1 (2.8.4)
2 1l+eqp - - i
The interface velocity, non-dimensionalized with respect to boundary
layer edge velocity, is given by

ey
u = oy (2.8.5)

where the non-dimensional thickness and viscosity ratios e and u

are given by

& =3;- (2.8.6)

= %]

o (2.8.7)
Lo

The next step is to non-dimensionalize the governing equations
(2.7.1) and (2.7.3) and the boundary conditions (2.7.9) - (2.7.12)

and (2.7.17) - (2.7.21). To this end the following quantities are

introduced

(2.8.8)




52

(2.8.9)

C‘N<

N wz‘

(]

Then using Eq. (2.8.1) and (2.8.2) the Orr-Sommerfeld equations

L Al s

(2.7.1) and (2.7.3) become (for a linear velocity profile)

iV_‘ 2.1 [N = " 2 =
wl 2alwi + alwl ialkl(wl —alwl) (ﬁl cl) (2.8.10)

and

.

e s R o
wz Zazwz + azwz 1a2R2(w2 azwz) (u2 c2) (2.8.11)

where primes and dots denote differentiation w.r.t. § and n

respectively.

dimensionless disturbance wave number in the liquid

a; = kh (2.8.12)
liquid Reynolds nuu rer
u, h
R, = —= (2.8.13)
|

dimensionless phase speed in the liquid

¢, = 8Lk (2.8.14)
if
» dimensionless disturbance wave number in the gas
= ké (2.8.15)

2




’ gas Reynolds number

ueé
R, = e (2.8.16)
| 2
i -
; dimensionless phase speed in the gas
il
c, = u, (2.8.17)

| The following relationships exist between @15095C)5C, and Rl’RZ

@) = €, (2.8.18)

c, = ucy (2.8.19)
_ uep

Rl = = R2 (2.8.20)

The boundary conditions (2.7.9) - €2.7.12) and (2.7.17) - €2.7.21)

assume the following form for a linear velocity profile.

1. vij(e) =0, g=-1 (2.8.21)
2. by(n) =0, n=1 (2.8.22)
3. Wlp)(e) - dog4f] = e[dy(n) ~ 10,d,] at £ =0, n =0 (2.8.23)
b Wlyye) + odyy ()] = uellby(n) + afyy(m) at & =n =0 (2.8.24)

- s "o '
; 5. L[ - et} - S - vy (0]
asz o alRl

. A : e :
+ §;|a2w2<n> - Gy = epigm) - %;—f‘uiwl(o SECHGIEENIHGY




- g (o - @) - - T + L)
¥,(6) =0, £ =-1
¥o(n) =0, n

¥ (8) - da (0, (€) - ¢c)) =0 at g

wz(n) - ial(ﬁz(n) - CZ) =0 atn

where,

Weber number W = r
vo *h

Yig

Froude number F = uif/ Y/gh

(2.8,25)

(2.8.26)

(2.8.27)

(2.8.28)

(2.8.29)

(2.8.30)

(2.8.31)
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CHAPTER III

FORMULATION OF THE MASS TRANSFER PROBLEM
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3.1 Simplifying assumptions

The following simplifying assumptions were made for the mass

transfer problem in order to obtain a mathematically tractable model.

(i) As shown in Fig. 1b the liquid is injected at y = -h. At the
interface the liquid vaporizes and the vapor is entrained into the

gas boundary layer through convection and diffusion. It is assumed

that under steady-state conditions the liquid injection rate exactly
balances the loss of liquid species at the interface. This assures
that a liquid layer of constant depth 'h' is maintained.

(ii) The liquid layer thickness h and boundary layer thickness §

are assumed to be prescribed by a suitable upstream solution.

(iii) The liquid and gas motion are assumed laminar (or quasi-laminar)
and two dimensional both for the steady-state and the unsteady problem.
In the latter case only two dimensional disturbances are considered.
(iv) The gas vapor mixture has constant properties such as density,
viscosity, thermal conductivity and specific heat. In the case of
small rates of mass transfer, which is the concern of this work, these
properties have nearly the same values as the gas alone.

(v) The Prandtl and Lewis numbers for the gas mixture are unity in
both the steady-state and unsteady cases. Thus the velocity, temper-

ature and concentration boundary layers have the same thickness §.

3.2 The Steady-State Problem

fhe steady-state or the mean flow is assumed to be incompressible




and parallel with uniform injection rate at the wall and uniform

evaporative mass transfer atthe interface (Fig. 1lb). The mass

transfer rate is assumed to be consistent with the thermodynamic
conditions and its determination is described in Sec. 3.3. The
governing equations are

Liquid:

1. Continuity

d~1
— = =0 (3.2.1)
dy
2. x—momentum
du d%u
\21 3 1. 12 1 (3.2,2)
y dy2
3. y-momentum
dp,
a;—-= - P8 (3.2:3)
4. Energy
aT k, d%f
o g — (3.2.4)
Y pcpl dyz
Gas-vapor boundary layer:
5. Continuity
(E245)
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6. x-momentum

du d2u
' ~ 2
| e 2 (3.2.6)
&
! -
|
i 7. y-momentum
|
|
i dp ;
! 2 _ §
{ ek 0 (3.2.7) ﬁ
8. Energy (neglecting viscous dissipation and pressure 1
gradient terms)
~ 2"'
; de i k2 d T2 e,
24y PgCh) gy?
9. Species continuity
5 7 Picy
v, W p X (3.2.9)
2 dy dy2

where X is the mass fraction of vapor in the gas boundary layer.
The total order of the system of Equations (3.2.1) - (3.2.9) is 14 and
an equal number of boundary conditions must be provided. These

conditions are listed below and their explanation thereafter.
1. No slip at the wall
uy(-h) = 0 (3.2.10)

2. Boundary layer edge condition on the velocity

R ——




conducted through the liquid and the remainder is spent in
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u2(5) =
No slip in the tangential velocity at the interface

3,(0) = 4,(0)

Balance of shear stresses at the interface

dul , du2
M1 dy |y=0 T ¥2 dy |y=0
Constant temperature or adiabatic wall
) at,
Tl(“h) = Tw or ale=“h =0

Boundary layer edge condition on temperature

Tz(é) = Te

Energy balance at the interface

Heat transferred from the gas to the interface is partly

vaporizing the liquid.

dT; dt, g
kl'd—}-’—=k2§‘>;—+plvll at y =0

where 2 is the latent heat of vaporization of liquid.

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

£ r— -
2 L Sy i S v B




10.

11.

No jump in temperature at the interface
T,(0) = T,(0) (3.2.17)
Boundary layer edge condition on pressure
p,(8) = p, (3.2.18)
Balance of normal stresses at the interface
51 + DIG% = 52 + 0263 at y =0 (3.2.19)
Specified injection velocity at the wall

61(~h) = a/pl (3.2.20)

where m is liquid mass transfer rate (mass injected per unit time

per unit area) at the wall.

12.

13.

14.

Global mass balance at the interface

Vi = PoVy at y =0 (3.2.21)

|
Balance of liquid species across the interface

~ >

- . dx
PIVy = PyVaX p2D dy (3.2.22)
Boundary layer edge condition on vapor concentration
x(8) = 0 (3.2.23)

Note that in Eqs. (3.2.9) and (3.2.22), D = v since Pr, = Le, = 1

SR S o
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1
The first ten boundary conditions (3.2.10) - (3.2.19) are modi- !f
fied forms of Eqs. (2.2.7) - (2.2.16) to account for mass transfer. g’
The value of mass flux in at the wall is determined by the thermo-
dynamic conditions of the problem (Sec. 3.3). Eq. (3.2.21) states

that the mass flux of liquid reaching the interface is balanced by

TR VR o

the gas-vapor mass flux leaving the interface (note that subscript '2' {

now denotes the gas-vapor mixture). Eq. (3.2.2) expresses the fact

that the mass flux of liquid species at the interface is balanced

by the convection (pzﬁzﬁ) and diffusion (—pzDai/ay) of the vapor
species. If a similar condition is written for the gas species at
the interface, assuming that the air is insoluble in the liquid (i.e.
zero mass flux of air at the interface),

dx

= i —2
0 DZVZXg o oD i (3.2.24)

where ig is the mass fraction of gas species. Since { =1 - Xg’

the above equation can be written in terms of X as,
iy, 2 i = Pl (3.2.25)
22 2V 2" dy e

when Eq. (3.2.25) is combined with (3.2.22) the result is Eq.
(3.2.21). Thus the latter equation can be said to express the

condition of insolubility of the gas species in the liquid.

Finally, the edge condition or concentration (3.2.23) could well be

x(8) = Xg» where X is some prescribed vapor mass fraction in the
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treated as a ‘reduced' concentration.

(as a function of m ) is ~—

v-component profile in liquid

¥y m/pl = constant
v-component profile in gas-vapor
Yy = m/p2 = constant

u~component profile in liquid

exp (my/u, ) exp (~mh/u,)

1
u, exp (mG/uz) exp (-mh/u,)

u~component profile in gas-vapor

exp(ﬁy/uz) exP(—éh/ul)

l32
u, exp(md/uz) exp(—ﬁh/ul)

pressure profile in liquid

- 21 1 ,
Py =D+ HE == = = pyEY
) | e p2 Ol} 1
pressure profile in gas-vapor
ﬁz e constant

B inviscid free stream. Thus X in the present formulation could be

The solution of the steady-state problem with mass transfer

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)

(3.2.31)
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temperature profile in liquid
c, T
- B2 exp (myPr. /u.) - 1|+
T J

2w
cpl Te

“p2
cpl

[eXp (myPrllul) - exp (—thrl/ul)]
tw 3
{exp(méPrZ/uz) - 1} s {exp(myPrllul) - exp(thrl/ul)}
& Le ple By

c
{exp(ﬁéPrz/uz) -1} + EBE-{l - exp (-mhPry/up)}
pl
constant temperature wall

'-i‘ :
o =

(3.2.32)

5 {exp(ﬁd/uz) - 1} = const.

wx € T

p2-e
adiabatic wall

temperature profile in gas
“p2
{exp (myPr,/u,) - 1} + —BS {1 - exp (-mbhPr_ /u.)} +
22 c Lol
pl
. 1 - exp(mhPr, /u,)
P 1'%

-~ d - ~ —-——w —
i, {exp(méPr2/u2) exp(myPrZ/uZ)}[T —
it L e ple J
Te CEZ
{exp(méPr,/u,) - 1} + {1 - exp(mhPr_/u )}
272 c 1
pl
constant temperature wall

(3.2.33)

% ;
{exp(ms/ujy) - exp (iy/u,) }
adiabatic wall

-] a
cpZTe
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where
Pr, = ulcpl/k1 = Liquid Prandtl Number

and

Pr /k2 = Gas Prandtl Number = 1

2 = ¥a%2

Vapor mass fraction profile
x = 1 - exp(iy/u,)/exp(@&/u,) (3.2.34)

The interface quantities are obtained from Egs. (3.2.26) -

(3.2.34) by putting y = Q. Thus
Interface velocity - v component

v.. =m/p, y=0
= - (3.2.35)
=ri1/p2 y=0

Interface velocity - u component

uj e 1- exp(—mh/ul)

Ue = exp(ﬁls/uz) - exp(ﬁ‘h/ul) (3-2-36)

Interface temperature

c
e {1 - exp(-mhPr_ /u,)} +
c 7 e |
pl
s Tw 2 s
{exp(mdPrz/uz) -1} T T {1 - exp(—thrl/ul))
& e ple

if

e

c
{exp(ﬁé?rz/uz) -1} + —Bg-{l - exp(—ﬁhPrllul)}
“p1 (3.2.37)
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Finally, cone important fact needs to be brought to the
attention of the reader. In the case of the gas boundary layer
the conditions GZ =u,, TZ = Te and i = 0 were applied at y = §
vather than at y + », This was done in order to obtain bounded

solutions. Consequently, these solutions have discontinuous first

derivatives at the edge of the boundary layer.

3.3 Determination of Mass Transfer Rate m

It was mentioned in the previous section that the mass flux
m is determined by thermodynamic conditions. This task is
accomplished as follows.

It has been assumed so far that m is specified and that the
liquid depth h remains constant. The latter implies that whatever
amount of injected liquid reaches the interface must vaporize and
then convect and diffuse into the gas. Now Eq. (3.2.34) shows that
at the interface the vapor has a definite concentration under steady-
state conditions. If the vapor alone were to occupy a unit volume
above the interface it will be in phase equilibrium with the liquid
at the interface temperature and pressure. Hence this 'saturation'
condition fixes the partial pressure of the vapor at the interface
temperature. The partial pressure of the vapor, in turn, determines
the interface concentration. The phase equilibrium is expressed by

the Clausius-Clayperon equation as

5, = ke '/RT, (3.3.1)
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for a vapor point that behaves like an ideal gas. ﬁv is the partial

pressure of the vapor at temperature TZ‘ Thus

Pv g sz (3.3.2)
by Dalton's law for an ideal gas. 1In (3.3.2) x is the concentration
and ﬁ is the mixture pressure. In (3.3.1) K is a constant and % is
latent heat of vaporization which is assumed constant. £ is inde-

pendently known from calorimetric data. Combining the last two

equations
xp, = keVFT2 ar y -0 (3.3.3)

where T2 is the gas-vapor mixture temperature at the interface.

Using a more convenient form of (3.3.1) the result is

= - = | —— -

n at y = 0 (3.3.4)

pref

where Pref and Tref are some reference 'saturation' conditioms, i.e.,
Tref is the boiling point at pressure pref’R is the gas constant of

the vapor.

Recalling that the steady-state solutions were obtained in terms

of m, Eq. (3.3.4) becomes

¥ ()p., ()

™ & 2 i 1

¢n |—————|= - = |m=—Fv - 77— at y = 0 (3.3.5)
Pref 8 [TZ(m) Tref]

f can be determined, in principle, by solution of (3.3.5). For

instance, in the case of constant temperature wall, substituting for




where

52, iz and x from Eqs. (3.2.31), (3.2.33) and (3.2.34) into Eq. (3.3.5)

L pe

with Pr

method.

% . B
T - an = n{l exp(—mé/uz)} * e e
ref ref e

c
N = exp(ﬁuSPrz/u2 -1) + ~Rg-{1 - exp(—ﬁhPrl/ul)} (3.3.6)
o1
p2
B m {1~ exp(-mhprl/ul)}
pl
. TW L .
+ {exp(méPrz/pz) - 1} T TR {1 - exp(-thrllul)}
e ple
-1

2

Eq. (3.3.6) is nonlinear (even when simplifications are made

for small mass transfer rates) and is solved by the Newton-Raphson

This procedure is described in Sec. 5.3.

3.4 The Unsteady Problem

Liquid:

The formulation of unsteady problem follows closely the zero
mass transfer case. When the steady-state configuration of Fig. 1l.1b
is disturbed the resulting unsteady, two dimensional, incompressible

motion with interface mass transfer is governed by the equations below.

1. Continuity

| (3.4.1)
— +
X




2. x-momentumn

— — 2-—- 2_
3ﬂi > Bui o 9 . 1 apl 9 u 9“u
AL Y e e e, +
Al ax? ay2
3. y-momentum
— = o 2 2y
G RO RS SRR 0 e T
ot 1 9x 1 9y o1 dy 1 %2 3y2
4, Energy
e T 2 2
3T1+_ Ty _ 3Tk [37T) 97T
t e o 3¢  p4c i
17pl (ox2 ay?
Gas-vapor:
5. Continuity
3‘2.'._3_‘,2:0
9x dy
6. x-momentum
e -y = = 25 2
auz - au2 e Py 9°u, 97,
5t +u23x +V28y ——E—aT+\)2 +
2 ax? dy?

(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

3.4.7)
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8. Energy (neglecting viscous dissipation and pressure gragient terms)

= v = 25 -
9T, _ 9T, _ 9T, k, [a B oL
_a?_ + uz a + V2 a = = + (3-4.8)
# y O leaxz dy?
9. Continuity of vapor species
7 i = 2 =
L TN TR (3.4.9)
ot 0x ay %2 8y2

This system of equations is to be solved subject to the
following boundary conditions. This development follows very

closely the work in Sec. 2.4.
1. No slip at the wall

Ei(x,y,t) =0, y=-h (3.4.10)
2. Edge condition on the u-velocity component

Eé(x,y,t) Wy ¥ = § (3.4.11)

3. No slip in tangential velocity at the interface (Fig. 2)

(same as in zero mass transfer case)

— — - 9
u, - u; = (Vi - v2) Eﬁ-at y = n(x,t) (3.4.12)
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4, Balance of shear stresses at the interface

(no modification over zero mass transfer case)

2 = = = =
i1l ng ; (auz . o ZJ- 2u2nx(3u2 . avz]
2 2 1
X

15w ay ox + nt X dy
X
- n2 o v G v
1 = Bul Bvl 2ulnx 3u1 Bvl
= e & == - (3.4.13)
L& g2 T B gt
X
5. Constant temperature wall
T (5.t) = T, ¥ = B
or adiabatic wall (3.4.14)
3T1(X,y,t)
B =0, y==b
6. Edge condition on temperature
_’I‘_Z(x,y,t) =T g =8 (3.4.15)

7. Energy balance at the interface

BTZ oT

ke 30 =By 5 0Ty W oy = nlxt)

where VR2 is gas velocity vector relative to the interface and

T is the outward unit normal to the interface. Since sz = V2 - vif‘

the previous equation can be written as

K.V, '@ = k,VT, -7 + zpz(Vz -V

3V R | )«a

if

If F(x,y,t) = O represents the interface the unit normal is given by
= VF

® T Tl
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thus

I

N ST - SRR | ) . L _
k2VT2 W VTl W + —]—Vﬂ LV2 VF Vif VF:I

A very delicate argument needs to be made with regard to the term
Vif « VF. At every instant of time, the interface shape is given by
a surface formed by those points that have the value F = 0 at that
instant. Thus, to an observer moving with the interface, there is

no change in value of the function F. In other words, the total time

rate of change of F(x,y,t) following a point on the surface is zero.

Hence,
aF . =
t:+vif VF = 0
or
= _OF
T

43
The reader is referred to Karamcheti for a more complete discussion

on this point. Eliminating the term V; + VF the energy balance

f

condition reads

oF

kZVTZ « VF = VTl « VF + QQZ(VZ s VF + = = 0
However,
D,F
o= o - P e P
BT T R T e Yoy T Bt

and hence,
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D,F

= = . 2 =
k,VT, * VF = klvrl VF + %0, bt on y = n(x,t) (3.4.16)

This equation reduces to Eq. (3.2.16) for steady-state

conditions and to Eq. (2.4.7) in the absence of mass transfer.

8. No temperature jump at the interface

Tl(x,y,t) = Té(x,y,t) on y = n(x,t) (3.4.17)
9. Edge condition on pressure

Fz(x')’vt) o= Pe, y=2¢6 (3.‘0.18)

10. Balance of normal stresses (momentum flux) at the interface
(Fig. 3b)
This condition is derived by applying Newton's second law to
the fluid crossing the interface, viz.
Rate of change of normal momentum per urit area
= External stress in normal direction

Normal momentum flux above the interface = [(ozvkz ¥ E)sz‘]' n

v . 2
pp(Vgy = M)
Normal momentum flux below the interface = pl(vkl c w2
External stress in normal direction = gy = 0y o %

Hence,

- T e by o
PpVgp * M* = pyVpy "M =0y -0y =3




Following the development of Eq. (3.4.16) it is seen that

S
R2 VF] Dt *" "Rl VF] Dt
Therefore,
2 2
: D,F s § ORI |
ToFl? (P2[D,e| ~ P1)D e 2”1k
For F(x,y,t) = y - n(x,t)
l_= _ nxx
$ a+ n§)3/2

and

/2 V/2
aF | _ ,
4 [a—yﬂ) o)

jor| ﬁgi)z

(4)

Substituting for 1/R, |VF| and 0, , (from Appendix B) into
’

1/2
Eq. (A) and multiplying through by (1 + ni) /% the following equation

is obtained

P2ID.t D.t

2 2
D2F DlF anx
- o,
2 3 1+ n?
X

i Z“i{“z ;f_g =My :%—l]
+ 2 [uz -:—j—% - ¥ Z—jl]
ol L [
at y = n(x,t) (3.4.19)
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> 11. Specified injection velocity at the wall

Clayperon equation.

12. Global mass balance at the interface (Fig. 2)

This condition can be expressed as

Mass flux below the interface

= Mass flux above the interface

PiVpy * B = PyVpp ° 8

which reduces to

D2F DlF

as shown in the derivation of Eq. (3.4.16)

13. Balance of liquid species across the interface
This is the condition that the mass flux of liquid at the

interface is balanced by the convection and diffusion of vapor

away from the interface. Thus
Vo, *o=pxV,, *T-p,D 3
P1'R1 P2X"Rr2 P2"

This equation reduces to Eq. (3.2.22) in the steady-state case.

O ——

In the absence of mass transfer Eq. (3.4.19) reduces to Eq. i

(2.4.10) and for steady-state conditions it reduces to (3.2.19). i

L Vl(x,y,t) = 1{1/01, y = -h (3.4.20)

where m is known from the steady-state solution of the Clausius-

BT A

A

(3.4.21)

species




Carrying out the usual substitutions

D.F D, F

e SR, T e SN D 1 ¥y * VF
°1 TvF Dt PaX Tvr Bt~ P2 [VE] "X
or
DlF D, F L
pl ———-D = = pzx —-——D T - DZDVX « VF at b n(th)
i 2
combining with Eq. (3.4.21) the final form is
DlF
1-x ET+ DVY * VF = 0 at y = n(x,t) (3.4.22)
1
Since it has been assumed that Pr2 = Le2 =1 in the unsteady case also,

D = v, in Eq. (3.4.22).

V2
14. Edge condition on vapor concentration

(3.4.23)

]
O

x(x,y,t) = 0 aty

The boundary conditions (3.4.10) through (3.4.23) developed so
far are based on the same physical conditions as in the steady-state
case. The order of the steady-state system of governing equations
(3.2.1) - (3.2.9) is 14, whereas the order of the unsteady system
(3.4.1) ~ (3.4.9) is 16 with respect to the variable y. As pointed
out in Sec. 2.4, the x and t dependence may be eliminated by assuming
a travelling wave type of unsteadiness and consequently one need only
be concerned with boundary conditions with respect to y. The change

in the order from 14 to 16 is due to the appearance of second deriva-
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tives w.r.t. y ir Eqs. (3.4.3) and (3.4.7). Therefore two additional
boundary conditions (on Vi and Vé) are required for a well-posed

formulation. One straight-forward condition, analogous to Eq. (2.4.12)

P S ——— ey

in the zero mass transfer case, is

153 Vé(x,y,t) = ﬁ/pz, y =6 (3.4.24)

where m is the steady-state value. Thus the mass flux leaving the
edge of the boundary layer is assumed to remain unchanged.

The last remaining condition is not so obvious. It expresses
the fact that Eq. (3.4.21) can in fact be looked upon as two boundary

conditions, viz.

D.F
12a. °y Bl? = m(x,y,t) at y = n(x,t) (3.4.21a)
1
D,F  _
12b. Py 5;{ = n(x,y,t) at y = n(x,t) (3.4.21b)

where m is the unsteady mass flux at the interface and its determination
will be discussed later in this section. Egs. (3.4.1) - (3.4.9) together
with the boundary conditions (3.4.10) - (3.4.20), (3.4.21a), (3.4.21b)
and (3.4.22) - (3.4.24) form a well-posed problem.

In the steady-state problem the mass transfer rate m was ob-
tained by applying the condition of phase equilibrium at the interface.

It is now assumed that the equilibrium of phases prevails in the

unsteady case also. This requires that the Clausius-Clayperon equation

be satisfied in the unsteady case. Writing Eq. (3.3.3) for the unsteady
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problem

16. X, = B MBEE 4 v = ) (3.4.25)

The Clausius-Clayperon equation thus determines the steady
(or mean) mass transfer rate m for the steady-state problem and the
perturbed mass transfer rate m in the unsteady case. With the aid
of Eq. (3.4.25) the previously stated formulation can be modified as
follows.

A well-posed unsteady formulation is represented by governing
Eqs. (3.4.1) - (3.4.9) and the boundary conditions (3.4.10) - (3.4.25).
It should be noted that this does not require the use of Egs. (3.4.2la)

and (3.4.21b).

3.5 Travelling Wave Solution of the Unsteady Problem

The solution of the unsteady problem closely follows the pro-
cedures in Secs. 2.5 and 2.6. The experience gained in the solution
of the unsteady zero mass transfer problem suggests the following

travelling wave solution.

4, 065,t) = q () + s, e EF) o) @5
{=1,2

where s<<1
The possibility of assuming the above form of solution was
mentioned earlier in connection with Eq. (2.6.8). The interface

shape is assumed to be

!
|
3
|
|
f':
|
|
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n(x,t) = shet SEEE) . ety (3.5.2) |
i |
The transfer of boundary conditions from the unknown interface
y = n(x,t) to the known steady-state position y = 0 is accomplished
»
by the Taylor series expansion
q, (x,n,t) = q,(x,0,t) + n+ =3+ +---, i=1,2  (3.5.3) :
i i ay 2] 2. :
y=0 3y“'y=0 ]
:
where n is given by (3.5.2)
Substituting Egs. (3.5.1) - (3.5.3) into the governing Egs.
(3.4.1) - (3.4.9) and the boundary conditions (3.4.10) - (3.4.25) and *
subéracting the zeroth order (i.e. steady-state) equations, the 0(s)
i i

problem is (after considerablé algebra):

Liquid:
1. iku1 + vi =0 (3.5.4)
i ~ . ikp .
=1 [ O s L
2. iwug + ikulu1 + vy + viuy o + vl(ul k ul)
(3.5.5)
\J
3 -iwv, + ikv.u, + v,v! = - I—)‘—l--+ v, (v = k2v.) (3.5.6)
. 1 i o Wl b | 01 1% 1 et
o v ~ kl 2
o ' W oo AR
4. inl s ileu1 + vlTl + vlTl plc (Tl k Tl) 350
pl
Gas:
& | -~
S 1ku2 gl - 0 (3.5.8)
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ikp
- = =t T 2 [
£ 6. 1wu2 + iku2u2 + v,yu, + V,u, = o + vl(u2 3 u2) (3.5.9)
pV
- =2 = o ok i 0o 12
§ | A 7. 1wv2 + ikv2u2 + v,V = 5 + vz(v2 k v2) (3.5.10)
i K,
bt : e T ot o & gmn 12
| 8. inz + 1kT2u2 + VZTZ + v,T) — (T2 k T2) (3.5.11)
! 2-p2
] ; : - )
| 9. -iwy + ik)\u2 + v2x'+ vzx'= D(x" - kZx) (3.5.12)
Boundary conditions are
1. ul(y) =0, y=-h (3.5.13)
2. uz(y) =0, y=§ (3.5.14)
o = 2l [~ | 2 o i =
5o uy = Uy h(u:L u2) + 1kh(v1 v2), y =20 (3.5.15)
' - = SO n =
4. uz(u2 + ikvz) “l(ui + ikvl) (ulul “2“2)h’ y=20
(3.5.16)
5. Tl(y) = 0’ = 0
or (3.5.17)
' = =
Tl(}’) 0, vy 0
6. T2(y) =0,y=0 (3.5.18)
¥ - ' = - < S e Fn =
7. gt bl 2pz[v2 ikh (i, w/k)] + (g = kTR, y = 0
(3.5.19)
- = T! - T! =
(- T2 T, ('I’l T2)h, y =0 (3.5.20)

9. pz(y) =0, y=29 (3.5.21)
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10. 2&[:(y2 - v;) - ikh(u, - 61)] = -Tk?h ~ (p, = p;) - (pj - pp)h

+ 2(p2vé - ulvi), y = @ {3.5.22)

11. vl(y) =0, y=-h (3.5.23)

12, 02[ Wy = ikh(ﬁ2 - w/kﬂ = pl[vl - ikh(ﬁl = w/kﬂ , ¥y =0 (3.5.24)

13. (1 - i)[ﬁvz - ikh(3, - m/ki] ~ V,x +Dx'= 0, y =0 (3.5.25)
14. x(y) =0, y =5 (3.5.26)
15. vy(y) =0, y=6 €3.5.20)
16. P LT
Lyda-t 50 (3.5.28)
P2 X Rr13

The total order of the system of ordinary differential
equations (3.5.4) - (3.5.12) is 16 and there are 16 boundary

conditions (3.5.13) - (3.5.28).

3.6 Further Simplifications

uy and p, may be eliminated from Eqs. (3.5.4) - (3.5.6) using
the procedure of Sec. 2.7 to obtain an equation in vy Similarly, an
equation in v, can be derived by combining equations (3.5.8) - (3.5.10).
Now the governing equations are

iv k?

<] €
H

i "y _ 2.1 1 4
1. v1 Vi 2k vy + ;~vlv1 + k vy
1 1L
- ll_‘_ w . 2 B =
5 [(v1 k vl) (ul - w/k) - ul'vl] (3.6.1)
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k
~ 1
1 o e et e
2. -iwT) + ikT u + vl'rl + v P e 1(T1 k Tl) (3.6.2)
iv 2wt 2.1 k2~ TR
3. ¥y = ;;vi - 2k Vo + ;;VZVZ - k vy
1.3 PETI - 2
v, [(v'2 2)(u w/k) u2 2] (3.6.3)
k
2
- ' Y = no_ 2
4, 1wT2 + 1kT2u + va2 + v2T2 2= (T2 k TZ) (3.6.4)
27°p2
5. -iwy + ikxﬁ2 + vzi' + sz' = D(x" - k4x) (3.6.5)

A comparison of Eq. (3.6.1) and the original Orr-Sommerfeld
equation (2.7.1) shows that there are two additional terms in the
former. These terms v v"‘/v and k2v 1Y /v are due to mass transfer.

A similar observation can be made by comparing Eqs. (3.6.3) and (2.7.2)

The variables U, Py U and p, may be eliminated from the boundary

2
conditions using equations (3.5.4), (3.5.5), (3.5.8) and (3.5.9). This
operation is the same as described in Sec. 2.7. The resulting boundary

conditions are

1 v! =0, y =-h (3.6.6)

1
2, vé =0, y=2¢ (3.6.7)
| %t o 'Y 2 2R w ;o=
3. vy -V, lkh(ul uz) k h(v1 VZ)’ y 0 (3.6.8)
4, ul(vx + kzvl) - uz(vg + kzvz) = ikh(ulﬁg - uzﬁg), y=20
(3.6.9)

(3.6.10)

s S e 0

PO~ SN S MRS B ==
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11.

12.
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14,

15.

(1)
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T, =0, y=¢ (3.6.11)
t - ' = - u, - k t k T" - k T")h, 0
k,Ty = k1) sz[vz ikh(u, w/ i] ( i
(3.6.12)
- s (Pt - T = 3.6.13

Tk2b + h(py - p}) + iz [uz(V"' k2v}) - uy (vi'= K2v)) + (v - v'2')]

Py [ 2{v2 5~ vé(ﬁz - w/k)} - pl{vlﬁi - vi(ﬁl - w/k)}]
—2(u2vi - ulvi) + 21i1(v2 - vl) =0,y=0 (3.6.14)
e 0, y =-h (3.6.15)

pz[v2 - ikh(d, - w/k)] - pl[vl - 1kh(d; - w/k)], gm0 (3,616

a- )~()[v2 - 1kh(£2 - w/k)} - \?2x +Dx'=0,y=0

(3.6.17)
x=0,y=26 (3.6.18)
v, =0, y=38 (3.6.19)
u n P
2 Za® = moa| _ < ~ % D4
2 2[" = kv, T?’z] 1kp, |V 242 v, (u, “’/k)] N
pok 2
41,
=—=,y=0 (3.6.20)
RT22

The following observations can now be made:

The order of the governing equation (3.6.1) -~ (3.6.5) is 14 whereas

the number of boundary conditions is 15. The condition (3.5.21) is no

|
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longer needed since Py has been eliminated as an unknown.

(i1) The governing equations (3.6.1) - (3.6.5) are homogeneous in
Vi Tl’ Vys TZ’ and x. The boundary conditions (3.6.6) - (3.6.20),
however, are not all homogeneous. This fact has important conse-
quences as will be shown in Chapter V.

(1ii) It appears that the modified Orr-Sommerfeld equations (3.6.1)
and (3.6.3) can be solved independently of the energy and concen-
tration equations. These equations, however, are coupled through
the boundary conditions and therefore, unlike the zero mass transfer
problem, the present problem cannot be decoupled.

(iv) Egs. (3.6.1) - (3.6.5) can be solved subject to 14 boundary
conditions (3.6.6) - (3.6.15) and (3.6.17) - (3.6.20) and then Eq.
(3.6.16) can be used to obtain a characteristic equation. This is
similar to the method described in Sec. 2.7(iv).

(v) The stability of the interface is determined in the same manner

as in Sec. 2.7(v) by solving for the eigenvalue w. Thus

wi >0 unstable interface
Wy <0 stable interface
wy = 0 neutrally stable interface

T
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3.7 Non-dimensionalization of the Eigenvalue Problem

Non-dimensional vertical co~ordinates £ and n defined by
.
=
& h (3.7.1)

and

T T ————

o
L (3.7.2)

are introduced. The steady-state profiles (3.2.26) - (3.2.34) are

made dimensionless first. ﬁl ana Tl are made non-dimensional w.r.t. the
interface quantities u, . (Eq. 3.2.36 ) and Tif (Eq. 3.2.37) respectively.
Similarly ﬁz and T2 are made dimensionless w.r.t. edge conditions u,

\

and Te respectively.
Liquid:

u-velocity profile
. exp(RhE) - exp(—Rh)

w (€) = 7= exp(-K,) {3.7.3)

Temperature profile (constant temperature wall)

'k
= - w
cp{exp(RhPrlz) - exp(-RhPrl)} ~ gy T; {exp(RhPrlE) -1} +

T
2 _ {exp(R.Pr,) - 1}|== - ——&——-{exp(R Pr.£) - exp(-R P )]]
T, (§) = §r2 [%e coiTe h r1: h' Tl |

-

E;{l - exp(-RhPrl)} + {exp(RaPrz) - 1}[T!-- -—ﬁﬁr{l - exp(-RhPrl)%]

e Cplie

(3.7.4)
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F | . Gas:
exp(Rgn) - exp(-R)

Z uz(n) = exp(RG) 5 exp(—Rh) (3-7.5)
§ .
% Temperature profile (constant temperature wall)
§
exp(RéPrzn -1) + cp{l - exp(-RhPrl)} +
Tw L
- {exp(RsPrz) - exp(RGn)} 713: - cplTe {1- exp(—RhPrl)}
T,(n) = = = (3.7.6)
2 {exp(RGPrz) 1} + cpTTﬁ exp(-RhPrl)}
Vapor mass fraction profile
x(n) = 1 - exp(Rgn) /exp (R,) (3.7.7)
where
Mass transfer Reynolds number for liquid Rh = ﬁlh/ul (3.7.8)
Mass transfer Reynolds number for gas Rd = ﬁé/ul (3.7.9)
Liquid Prandtl number Pr, = plcpllk1 (3.7.10)
Gas Prandtl number Pr2 = pchzlk2 = 1 (3.7.11)

Specific heat ratio ¢ = c S 712
p c he 5 sz/ o1 ( )
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The interface velocity and temperature, made dimensionless w.r.t.

boundary layer edge properties, are

_ 1= exp(-Rp)
u = exp(RG) - exP(_Rh) (3.7.13)
e i1 - cxP(‘RhPtl)} * {exp(RG) - l{§1 - QT {1- exp(—RhPrl)ﬂ
- P : a cpl 2
e (3.7.14)

{exp(RG) -1} + E;{l - exp(—RhPrl)}

The next step is to non-dimensionalize the governing equations
(3.6.1) - (3.6.5) and the boundary conditions (3.6.6) - (3.6.20).

The following dimensionless terms are introduced for this purpose.

by = vlluif (3.7.15)
by = v2/ue (3.7.16)
61 = Tl/Tif (3.7.17)
62 = TZ/Te (3.7.18)

Then Eqs. (3.6.1) - (3.6.5) assume the form, for Pr2 = Le2 =1

iV_ "m_ 2, 2 (] N
1. By = Bydye Zagl; ¥ el hagyy

- 1a R [(“"1' - a2y ) - o)) - ﬁ'l'wl] (3.7.19)

"o . L 2 & 5 & T
L el Prthel {al+1alprlRl(gl(£) cl)}e1 PrlRl‘l'lwl (3.7.20)




e R e N
3. Uy = Rgby = 2a5¥, + Ry, + asy,

= 1a,R, [(&Jz - a2y,) (3, () = ¢ - 32“’2] (3.7.21)

e “ _ o A
(i 9 R, {a +ia2R2(u2(Yl) <=2)}e2 R2T2w2 (3.7.22)

2 $

5. R - Rgk = {a2 + msz(Gz(n) - ) Ix = Ryxv, (3.7.23)

where a1, %9, Rl’ R2, Cl, ¢, have the same definitions as in Eqs. (2.8.12) -

(2.8.17) and relationships between

by Eqs. (2.8.18) - (2.8.20).
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The boundary conditions (3.6.6)

dimensionless form

1. ¥ () =

2. V,(n) =

3. E[wi(g) - ialﬁi + ai ;1‘-]=
1

o ayE +adu @] = Ty + aduy ]~ oy @l - B2

5. 6, (8)

6. el(n)

[}

¢ X Rs
E[“’z(”) TR, L S R
2

at £ =0, n=20 (3.7.26)

at £=0,n=0 (3.7:27)
0, £ =-1 (3.7.28)
0, n=1 (3.7.29)

Hgs Y Oy 6o L, 2

-1 (3.7.24)

c, and R, R, are given

(3.6.20) take the following

1 (3.7.25)
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10.

11.

12.

13.

14.
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(3

5,(n) - =X 81(5) = Ri’z’i{%(n) - 1a, G, () - cz)]+ [ty - Ferd)

at £ =0, n=0 (3.7.30)

6,(n) - To (g) = T} ~ eI, at £ =0, n=20 (3.7.31)

a2
———wz(n) - a2, ()} - ——2—1— W) - o291 ()} +

agR, ajRy
U e SECRG e O AR R R T SR
33{1{1 1 ang 2 ay '2 2 2 2 2
EL 1y (03] - 9] @) Gy ) - |- -—{ew (Y ~ TE)} +
) oy 1 2 1
s w2 By a2 1
2[—R—2-¢2(ﬂ) B-—-'R—l‘ ¥ (E)] = - :‘;——(aiw2+ F_Z) (3.7.32)
wl(i) » 09 E = '1 (3-7-33)
F[wz(n) - 1o, (4, (n) - cz)]= F[wl(E) - ial(ﬁl(s) - °1)]
at £=0,n=0 (3.7.34)
Ry (L = RYrp () = 10, Gy = €] = Rgx + X(0) =
at £ =0, n=0 (3.7.35)
x(n) =0, n=1 (3.7.36)

Wz(n) =0, n=1 (3.7<37)




T —————

l 1 (o .o . l . . ~
15. E[;;g{“‘z‘“’ - Ry, () - a3y () - -i—q—z-{uzwz(n) - by () Gy () - c2>]]

_6,(n)
+ 4121 = FT-2 at £ =0, n=20
x(n) 22 (n)

(3.7.38)

where in addition to the non-dimensional parameters defined by Eqs.

(2.8.6), (2.8.7), (2.8.30), (2.8.31), and (3.7.8) - (3.7.14) the

following quantities are introduced.

thermal conductivity ratio k = kzlkl

= 2
Euler number of gas E pe/pzue
A= l/cplTif

R = 2/RT, .

(3.7.39)

(3.7.40)

(3.7.41)

(3.7.42)

IR T St
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4.) Mathematical Statement of the Eigenvalue Problem

A concise mathematical statement of the problem described in
Sec. 2.8 is given below for linear mean velocity profiles described

by Eqs. (2.8.3) and (2.8.4).

Governing equations:

1. wiv_ 2“%*1 + a;wl - 101R1(w1 - aiwl)(ﬁl(i) -

=1 < SE <0 (4.1.

2 5 y :
2. - 2000, 4+ oYy = LR, (6, - o) (G, (0) - cy)

0<nc<1 (4.1.

where primes and dots denote differentiation w.r.t. & and n

respectively.

Boundary conditions:

1)

2)

1. v D =0 (4.1.3)
2. VD =0 (4.1.4)
3. v,(1) =0 (4.1.5)
4, {pz(l) =0 (4.1.6)
5. T} (0) - 1aG1) = e{d,(0) - iaju,) (4.1.7)
6. u{¥](0) + ofy (00} = pe?{y,(0) + ajy,(0)} (4.1.8)
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i E -2
7. L (§,0) - a2i, (0) )2 =— (¥(0) - o243 (0))
i a?R a?R
i 92 1]
+ b, 0 = (5,0 - )i, @) - T (G1y (0) - (5,(0) - v} (0))
a, " 2%2 2 €ad¥a ¢ oy LT 1 . i
2 == - i u? 2v12 1
% ﬁkz- {eny, (0) - uwi(O)} == = (aiw + }-2-) (4.1.9)
8. ¥, (0) - ml(ﬁl(O) - e) =0 (4.1.10)
9. ¥,(0) - 1al(az(0) < ey) =0 (4.1.11)
where
8,(6) =1 +¢ -1<g<0 (4.1.12)
ay(n) = -——2{.12 0<n<1 (4.1.13)
a; = ea, (4.1.14)
e, = Uy (4.1.15)
Rl = ﬁhﬁkz/g (4.1.16)
-l
u =gt (4.1.17)

The two Orr-Sommerfeld equations (4.1.1) and (4.1.2) are homo-
geneous in wl and wz. The boundary conditions (4.1.3) - (4.1.11),
however, are not all homogeneous. One of these conditions, say
(4.1.11), can be used to make Egs. (4.1.9) and (4.1.10) homogeneous.
The resulting system will then consist of two homogeneous fourth

order equations with eight boundary conditions, i.e. a legitimate




A
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eigenvalue problem. In the present work, however, the approach of

Bordner et.al37 is followed. The first eight boundary conditions éf
(4.1.3) - (4.1.10) are used to determine eight constants of inte-

gration and then (4.1.11) is used to obtain the characteristic

equation. This treatment was discussed earlier in Sec. 2.7.

4.2 Solution for a Long Wavelength Disturbance

Consider a disturbance on the interface whose wavelength is
much larger than the liquid depth and the boundary layer thickness.

Thus

ul << 1 and a2 << 1

with al/a2 = h/§ = €. In most problems of interest ¢ itself is very

small so o, must be extremely small. Let wl and wz be represented by §

E

the following straightforward expansions

e (4.2.1)

2
Yy L

- 2 PR
BTt T e T g

Substiteting these expansions into the governing equations and
boundary conditions (4.1.1) - (4.1.10), making use of (4.1.14) and

equating coefficients of equal powers of as the results are




94

Zeroth order problem: O(ag)

Governing equations

iy =0 (4.2.3)
Vpg = O (4.2.4)
Boundary conditions
1. Vo1 = 0
2. Vi1 =0
(4.2.5)
3. | Vye(1) = 0
4. Vpo(l) = 0
5. Tyt (0) = ey (0) = 0
6. WY (0) - Te2P,,(0) = 0
,e %§$20(°) 3} %i'%z Vjo(® = 0 i
8 V100 =0
First order problem: O(al)
Governing equations
by = iR ) - eV, (4.2.7)

= iR (4.2.8)

2(Uy = c)¥,,

Y21




R R EIS.=

et AN AT

Boundary conditions

1. wll(-l) =0
¥1,1) =0
¥y, (1) =0

W}, (0) = by, (0) = L(@G) - euy)

1 m 102 ~, el '
B e T O e ¥0(0}

-

= 1e{l,y¥,0(0) = (G, = c))Uyg(0)}

The characteristic equation for ¢, is obtained from Eq. (4.1.11)
with the aid of Eq. (4.1.15)

u, (0
¢, ==+ ﬁ;;wz(O) (4.2.10)

Substituting the expansion (4.2.2) into the above equation and using

(4.1.14)

u(0) i
Cl = %——— + WZO(O) + ﬁWZl(O) + O(Gl) (4.2.11)
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The zeroth order problem is completely homogeneous and therefore

has only a trivial general solution. Thus

1
o

lplo = (4.2.12)

l
o v

w20 = (4.2.13)

H The first order governing equations (4.2.7) and (4.2.8) have the

general solutions

- 2 3
Vg = Bpg * A LE P& EE H N E (4.2.14)

= 2 3
w21 A21 + A22n + A23n + A24n (4.2.15)

Introducing Eqs. (4.2.14) and (4.2.15) into the boundary conditions
(4.2.9), using (4.1.16) and solving for the constants of integrationm,

the following results are obtained after lengthy algebraic manipulationms,

All = i(ul(o) = Cl)

; p R % 6u, ~ i
.. 1{(@h) - eup) + =(6;(0) - e + =3
A =
12 o
. 2 . 1
i{Z(Ehi - euz) - 3u(ul(0) - cl)(l - E}ﬁﬁ}
A =
13 7))
1 @S] - edy) - 20, (0) - ¢ + 1=}
A =
14 oD




B S — —

97

{201 + D @8y - ely) - TGO - )G+ 2+ )

€D
(4.2.16)
1{63(3,(0) - e G - 1) - G+ i) - cdy)

Y]

€uD

1{2@@d] - ed)) - W@ O) - ¢ - )]

423 =
1{@G) - edy) - 28(5,(0) - ¢ A + 12}
Aoy =

ezﬁD
where
= Li+3
D-1+E_u_(4+e)
To complete the task of obtaining the eigenvalue ¢y Eqs. (4.2.13)

and (4.2.15) are combined with Eq. (4.2.11) to get

u,(0) )
2 i
ST e

+ 0 (al) (4.2.17)

Finally, substituting for 62(0), u and A,, from Egs. (4.1.13), (4.1.17)

and (4.2.16) into Eq. (4.2.17), the expression for the eigenvalue is

eB2 4 Gen o 1= # 20 + 1))

¢, = z = = + 0(ap) (4.2.18)
z =
6u[6+4€(l+§) + € u(l+5—,+;=z)]

The expression for c, shows that this particular eigenvalue

1

(or mode) depends only on the thickness ratio ¢ and the viscosity

ratio T; it is independent of the film Reynolds, Froude and Weber
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numbers. The most important observation is that c is purely real
and therefore represents a neutrally stable mode. Eq. (4.2.18) can

be simplified greatly for the case of a thin liquid layer with ‘

, €,7 < 1 such that €y << 1 and €2 << 1. This operation results in

By = 1+ 2¢ + O(al) (4.2.19)

This form is more illuminating in that it clearly shows that the

critical point always lies inside the gas (i.e. c, > 1) for this

1

mode. This statement will perhaps become more meaningful in Sec. 4.6.

£
T R T

4.3 General Solution for Arbitrary Disturbance Wave Numbers

Eq. (4.1.1) can be written in the form

w _ .2 "_2H_2 — EE " -

(4.3.1)
Let
vy - v = v, () (4.3.2)
Then Eq. (4.3.1) becomes
"o_ 2 A -y =
wy {al + ialRl(ul(g) cl)hwl 0 (4.3.3)
Following Feldmanzs, defining the transformation,
2 .
a7 + 1a.R, (u, (E) - c,)
g (g) = - ——L11 1 ! (4.3.4)

i ¢ /3
(alRlulg




99

where ﬁi is a constant for a linear velocity profile, Eq. (4.3.3) reads
d%h,
S = th =0 (4.3.5)
: dCZ 1lsal
1
where h,(g,) = w,{£(z))} (4.3.6)

Eq. (4.3.5) is the well known Airy differential equation and it is

regular everywhere in the complex £y - plane. In fact, this equation

possesses an irregular singularity at infinity.

Eq. (4.3.5) has the following pairs of independent solutions,

AL(5)), Bic)

2mi/3

ai(g)), Ai(g ™)

AL(z)), AL(g) 2™

where Ai and Bi are called the Airy functions of the first and second
kind respectively. Ai has the property that it is real for real L1
and Bi is constructed from Ai in such a way that Bi is also real for

real &y The relationships amongst the above solution pairs are (Ref. 44)

| % BECZ) = a™H® pacretTUSy g TG gy e TG (4.3.7)
{

; % M+ o Baigat ™0y b S e TRy 5.8

arze™?™B3) o LB 2) 1 isi(2) (4.3.9)
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In the present analysis the pair of solutions

21 /3, (4.3.10)

was chosen for convenience in the numerical integration encountered

later. Thus the solution to Eq. (4.3.5) is

+ ox
hl(cl) = C3Ai(clE ) CaAi(clE ) (4.3.11)

where
B = 203 (4.3.12)

Hence
w, (8) = CyAi{z, ()ET} + C A1z, ()E7} (4.3.13)

From Eq. (4.3.2)

= “i"’l = C3Ai{r,1(5)E+} + c,ai{z, ()E7} (4.3.14)

The homogeneous solution of Eq. (4.3.14) is

le = Clexp(ali) + Czexp(—alg) (4.3.15)

and the particular solution, obtained by the method of variation of

parameters (Ref. 42) is

&
C - %
wlp = ;—‘i—fsinh{al(i - &) }Ai{cl(t)E+}dt

(1
C
+ —&fsinh{a (£ - t)}ai{z, (£)E™}dt (4.3.16)
al 1 1
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Therefore the general solution of Eq. (4.1.1) is

T

o
E*

c. [
V) (8) = Ciexp(a;&) + Chexp(-a ) + 3'}[sinh{al(£ - ) Jat{z, (E)E }de

£
C >
% ;f./rsinh{al(i - ©)JaL{g, (£)E }de
A (4.3.17)

where Cl’ CZ’ C3 and C4 are arbitrary constants of integration.

E* is chosen for convenience to be sucli that
5 (M =0 - (4.3.18)

Thus £* is equivalent to the turning point of the Airy function for
a real variable.

An identical procedure yields the solution of Eq. (4.1.2) as

C n
¥p(n) = Coexp(ayn) + Ceexp(-a,n) + Eﬁp}rsinh{az(n - t)JAi{g, (E)E*}dt
*

n

C n
+-§fsinh{a (n - £)}Ai{c (t)L }dt
a, 2
%

n (4.3.19)
where
a2 + ia,R {0, (n) - c,}
2 J
go(n) = - : 2.2 2 (4.3.20)
. 2/3
(a,Ryu,)
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and n* is such that

cz(n*) =0 (4.3.21)

4.4 Application of Boundary Conditions

In the boundary conditions (4.1.3) - (4.1.12) derivatives of
121 and by w.r.t. & and n, up to third order, are required. Since
£ and n occur in the limits of integration of Eqs. (4.3.17) and
(4.3.19) it is necessary to use Leibniz's rule of differentiation
under the integral sign. The results are summarized in Appendix C.

Substituting Eqs. (4.3.17), (4.3.19) and the derivatives in
Appendix C into the boundary conditions (4.1.3) - (4.1.11) and
performing the required algebraic simplifications, the following

equations are obtained:

alexp(—al)cl + alexp(al)c2 +1,Cy+ 12C4 =0 (4.4.1)
a,exp(—al)C1 - alexp(al)C2 + I3C3 + 1404 =0 (4.4.2)
uzexp(az)c5 + azexp(-az)c6 + 15C7 + I6C8 =0 (4.4.3)
azexp(az)C5 - a2exp(—a2)C6 + I7C7 + 18C8 =0 (4.4.4)

ualCl - uoth2 + 'ITI11C3 + ﬁI12C4 - E’JZCS + €a2C6 - eIlSC7 - e:Il6C8

= T 2
ial(ﬁul auz) (4.4.5)




2
Zﬁalcl

2ua, I

+ [‘EAi{r,l(O)E'}- 1110

+ [4U62A1{C2(0)E+} + zvs2a2113] c, +-[-ﬁt2Ai{c2(0)E-} + zaszaleb] Cg = 0
(4.4.6)
[ - 2ua 1
_1._.""_2. ol i ST -}
{f a B (“1 - {u,(0) - °1}“1) + eikz] &
[ = 2uo .
i w2 ~y ~
F L— a %—(ul + {ul(O) - Cl}al) - SR ]CZ
— i
—2 =0 u
u 1 iu 1
O PR e i +1,tp+ =2
T ot AL' {5, (0)E }clE + = a% 9
! 1M1 s 22 .
iy M~ er a2ty e
a p 1 1 ETJRZ 11] 73
—2 e -
us & = = i uj
+ |- = 5— AM'"{ (OF }'E + =2 =1
2 1 5 7 +10
[ P alRl 1 af :
+ L‘T_ i ] 2u C
ng{%xm %}+€mz)1uj 4
+Lé-{ﬁ(0)*c}a __ZOL_Z_']C
ay 2 2 PR R2 J 5
S b 2a,
+ ‘@‘(UZ + {u2(0) - CZ}C).Z) + i;- C6
(1 L oy 1 2 1
] » i - = S [ - Y .
+ ;z;; Ai {;2(0)E+}"2E+ = 113 ( oL2{u2(0) cz} + Rz) Iis C7
L2 : ]
r ik iu2 i 2 -
+ AL'{z, (0)E }L,E - —— I -(—-{ﬁ (0) - c,} +—)I c
[ 95R, 2 2 2 14 \ay 2 2’ TR 16J 8
B s 1
paal a“W< + ;‘2' (4.4.7)

2 PR Lt —
+ Z't'icxlCZ + [uAi{cl(O)E*'} 2ua119] C3

] &, = ZUEZQ%CS = zae2a§c6 5




- - = 2 a -
“1C1 + °1c2 1903 Iloc4 1u1{u1(0) cl} (4.4.8)

uZCS + “206 - 113C7 - Il4c8 = ialaz{uz(O) - c2} (4.4.9)

where the integrals I1 through 116 are defined in Appendix E.
Egs. (4.4.1) - (4.4.9) form 2 system of eight linear algebraic

equations of the type

[acep]ter = tvee,) (4.4.10)

where [A(cli] is the coefficient matrix of the left hand sides and
{V(cl)} is the column vector of the right hand sides. The remaining

equation (4.4.9) can be written in the form,

G [cl;{c(cl)}] = ayCg + a,C¢ = 1,4C, = I,,Cq - 1a;0,(8,(0) - ¢,) =0

(4.4.11)
or more compactly
T X ’
G [&1;{C(cl)}] = {C(e)} (e} - daja, (0, (0) - ¢,) = 0 (4.4.12)
where
-1
tetepy = [atep] v (4.4.13)
and
} (4.4.14)

T & o
{U(cl)} {0 0 0 O a, 113 114

In Eqs. (4.4.11) and (4.4.12) <, is given by Eq. (4.1.15), G is the

characteristic function of Sec. 2.7 and ¢, is the eigenvalue. The




problem of determining stability of the interface is thus reduced
to finding the points in the complex ¢ plane at which G vanishes.

Eq. (4.4.12) can be expressed in the functional form
G (al,e;iiE,Rz,wlF;cl) =h() (4.4.16)

For the present physical problem G is an analytic function of the
above parameters and the mathematical problem reduces to finding the

zeros of an analytic function.

4.5 Outline of the Eigenvalue Iteration Procedure

The zeros of the characteristic function G must be determined

numerically and the major steps in this procedure are listed below.

(i) Guess c A method for obtaining a good guess value is described

1
in the next section.

(ii) For given values of ars Se 0o P R2, W, F and the guess value
s evaluate the integrals I1 - 116 using a suitable numerical
procedure. This is described in Appendix G.

(iii)Generate the coefficient matrix [A] and obtain its inverse. The
inverse was obtained using the routine MINV in the IBM Scientific
Subroutine Package after making minor changes to handle complex
numbers. The constants of integration were conveniently scaled to

avoid overflows in MINV. In order to check the accuracy of matrix

inversion the eigenvalue was obtained using MINV alone and by
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applying a first order correction to [A]-l. The difference between

the eigenvalues obtained by these two methods was negligibly small.
Also compute the right hand side column vector {V}.

(iv) Determine the constants of integration i.e. the vector {C} by

carrying out the matrix multiplication [A]_l{V}.

T (v) Compute G in Eq. (4.4.11), it should be close to zero if this

equation is satisfied.

(vi) If Eq. (4.4.11) is not satisfied calculate an improved value

of ¢ by using a suitable technique. In the present work, the

Newton~Raphson method was used for this purpose. This iterative

method requires computation of the first derivative of G. w.r.t. cy-

Details of the Newton-Raphson method are given in Appendix I.

(vii)Compare successive values of ¢y for convergence within a

prescribed tolerance on real and imaginary parts. Repeat steps

(ii) - (vi) until desired convergence is reached.

bk

4.6 Gen ration of an Initial Guess for cq

Since the Newton-Raphson method is sensitive to the initial guess
it is necessary to know an approximate value of cy- This value could be
determined either on a mathematical basis or a physical basis. The
b small perturbation method of Sec. 4.1 can be used as a mathematical
basis. However, it leads to only one zero of the characteristic

function G. It was found in the present investigation that a number of
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zeros of G are possible (see Chapter 6 for details). Hence a more
reliable approach to obtain the guess is necessary. As far as the
physical basis is concerned the works of Lock27 and Landahll0 suggest

that the real part of c, or the phase speed should be close to the speed

1
of propagation of free surface waves. Guessing only the real part
accurately, however, is not sufficient because the imaginary part is
of significance as well. It would be adequate to guess only the real
part if the investigation were to be confined to neutral stability
analysis. In the latter case the imaginary part of ¢y is necessarily
zero.

The above discussion shows that a simple clear-cut solution is
apparently not possible. An attempt was made to determine at least
the number of zeros of G inside a closed contour in the complex ¢y
plane. This was done using the 'argument principle' which states that

for a regulur analytic function G(Z) within a closed contour C the

number of zer.. of G within C is given by

1 G'(2)
e %-—-—G(Z) az (4.6.1)
N

where it is assumed that G does not vanish on C.

Numerical evaluation of the above integral as the limit of a sum
proved to be a very difficult task. This was due to the fact that the
integrand in (4.6.1) is highly oscillatory and undergoes large changes

of magnitude. Consequently, either graphical or purely numerical
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determination of the number of zeros in this manner would be extremely
difficult unless a very fine step size along the contour is employed.
The latter choice, of course, leads to large computation times. There-
fore, this course also had to be abandoned.

The only choice available 'is to determine the zeros of Re(G) and
Im(G) separately and then to obtain their common zeros. This can be
done graphically as follows. First a suitable interval on ¢y is
chosen. Recalling that the phase speed w/k was made dimensionless
w.r.t. the interface velocity {Eq.(2.8.14)}, it is seen that clr =1
corresponds to a critical point at the interface. Thus disturbances
which propagate with phase speed greater than the interface velocity

lie in the interval 1< crp < 1/4d. Now Eq. (4.1.17) shows that for

r
thin liquid layers and typically small viscosity ratios ey << 1 and
thus 1/u = g 1is large. Hence the gas side interval on clr is very
large compared to the liquid side (0 < ¢, < 1). The critical points
of interest, however, are those that lie near the interface. In other
words, relatively slow moving disturbances near the interface are of
interest. The reason being that in a real physical situation slow
moving disturbances are more likely to be triggered. In conclusion,
it is sufficient to consider a typical interval 0 < Bt = 4,

The next step is to choose a suitable interval on C14° It is not

possible in this case to offer an argument similar to the previous one.

Therefore, O_ilclili_l is chosen as a start. G is then calculated at
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a number of points inside the unit rectangle (e.g., at intervals of
0.1 along ¢, and cli)‘

Im(cl) as a parameter and the points of intersection on the x-axis

Then Re(G) is plotted against Re(cl) with

are determined. Similar plots are made for Im(G) and its zeros are
also determined. It is usually observed that as one proceeds from

c,, =0 to Iclil = 1 the trend of the curves shows that beyond a

1i

certain c1i there are no intersections on the x-axis. This fact

determines the upper limit on ST Finally, common zeros of Re(G)
and Im(G) can be roughly determined. These approximate values of

c, serve as initial guesses for Newton-Raphson iteration.

1

An illustrative example of the above procedure is included in

Chapter VI.

Sl o
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SOLUTION OF THE MASS TRANSFER PROBLEM
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5.1 Linear Approximation of Exponential Steady-State Profiles

The present investigation concerns itself with small values of

mass transfer rates. Hence it is assumed that

Rh<<1

and

Since Ig[ and lnl are always less than unity the exponentials in
Eqs. (3.7.3) and (3.7.5) can be expanded in a Taylor series to give

(up to first order)

G(E)=L® e, "L<5<d (5.1.2)
. + R.n
uz(n) =i———5-,05n51. (5.1.3)

=
It may be verified that the linear profiles in the last two equations

reduce to Eqs. (2.8.3) and (2.8.4) with the help of Egs. (3.7.8) and

(3.7.9). The mass fraction profile of Eq. (3.7.7) reduces to
x(n) = R(1-m), O0<nc< 1 (5. 1.8)

In order to linearize (3.7.4) it needs to be assumed in addition to
(5.1.1) that

R.nPr1 << 1 (5.1.5)

Typically, Pr, = 0(10) and this requires R, to be smaller than 0.01.
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The linearized forms of Eqs. (3.7.4) and (3.7.6) are

Pr.|lc {|1-—] - R
Rh 1} p 'I‘e cPlTe §

T, =1+ - £
1 =
R.hPl'l c -z-&-,-f—Rd +R6;ri
P plie Te

-1<E<0 (5.1.6)

T T
- w L \ L
chhPr1+R6|:T e T RhPrl] -RS[T_C T thrl‘l]"
i L e ple J e ple |
2 R, + chhPr1

Gshmxl (5.1.7)

Finally, linearized expressions for the interface quantities in

Eqs. (3.7.13), (3.7.14) and (3.7.7) are

l %
i R A (5.1.8)
Lk
T& 2
s R —T-; + RhPrl[ cp - —_cplTe R{l
T = = (5.1.9)
Ré + chhPr1
X = Rg (5.1.10)

5.2 Mathematical Statement of the Eigenvalue Problem

The mathematical statement of the mass transfer problem of Sec.
3.7 is given below for the case of the linear steady-state profiles-

described in Sec. 5.1.




b A 0 ML TR dl 4 v csro i

Governing equations:

L R 200 e + oy
= 1o R, (W] - o®¥) (@ (8) - ¢p) (5.
2. 0 — Pr,R 63 - {a # da,Pr R0, (C) = o 10, = Pr,R T'lwl (5.
3. ¥y = Rgly = 2056, + alRody + agh
= da,R) (Y, = afy,) (G, () = ) (5.
b B, - Rby - a2 + 10,8 (3,y(0) = c)))8, = R,T0 £
5« %= By~ {a? + ia%RZ(ﬁz(n) =ie,) Ix = Rziwz (5.

Boundary conditions:

113

.1)

.2)

.3)

.5)

.6)

.7)

.8)

=0 (5.
=0 (.
=0 (5.
=0 (5.

.9)

Rh'l Ry
= w(O)—iau + a —1(5.2.10)
1y 2 72 1% R,




6. H[ Vj(0) + uiwl(O)] = ’ﬁ'ez[ ?;32(0) + a%wz(O)] (5.2.11)
00y = atbitey | - Bl Loy - 2pe
Yy ¥ e & bo gy (@)
GZRZ Gl 1
7. + 2L b "(0) - % () # 4| =y, (0)3 i, (0 0. (0
i 1 ~ 4 ' 2 — —
o {p, (O8] - (u,(0) - cl)wl(O)}] - s—mfz {em, (0) - T} (0)}
R = R‘n =2
[ u 1
+ 2 [g ¥, (0) - = R, (o)] = - = (W + =2 (5.2.12)
8. ‘p‘[wz(o) - ml(ﬁz(O) - c2)] - ﬁ[wl(O) = da, (6,€0) - cl)] (5.2.13)
9. R,{1 - 3((0)}[ ¥, (0) - 1al(&2(0) = cz)] - Rx(0) + X(0) = 0 (5.2.14)
10. 8,(0) = 0 (5.2.15)
11. 6,(1) = 0 (5.2.16)
§ 8,(0) - To,(0) = ﬁi - 5%2 (5.2.17)
RZTA )
13. 6 ,(0) - -Tel(O) ) ¥,(0) - 1a;(u,(0) - c,) (5.2.18)
14, x(1) =0 (5.2.19)
1 (= 5
A5 ———{wZ(O) - Ry, (0) - wz(o)} 2[ a4, (0) - \PZ(O){uZ(O) - cz})
2 2
e ,(0)
P AL o W el (5.2.20)
x(0) TZ(O)
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where ﬁl(ﬁ), ﬁz(n), x(), Tl(n) and Tz(n) are given by Eqs. (5.1.2),
(5.1.3), (5.1.4), (5.1.6) and (5.1.7) respectively. u and T are the
expressions (5.1.8) and (5.1.9) respectively. Also, the relations
(4.1.14) - (4.1.17) hold for the mass transfer problem as well. The
evaluation of mass transfer Reynolds numbers Rh and R6 is the subject

of Sec. 5.3.

5.3 Evaluation of Mass Transfer Reynolds Numbers

It was mentioned in Sec. 3.3 that the mass transfer Reynolds numbers

RG and Rh have to be determined iteratively. This procedure is discussed

briefly in this section. Referring to Egs. (3.2.6) and letting

X = exp(RGPrz) = exp(R6) for Pr, = 1 (5.3.1)
the result is
: 2 1
0 = H(x) = 20 5— - + en(l - 2)
RT X
ref ref
— 1
0 (x-1) + cp(l - xn)
D WY — (5.3.2)
L P 1 Tw g 1
Cp(l——ﬁ) 00 e B i = =l = S22
X e ple X
Pr
)
n =5 ——-— = euPr (5.3.3)
§ ul Pr 1




In most cases of interest € << 1 and ¥ << 1 and Pr., is typically less

1

than 10 so that mn << 1. In order to evaluate RG it is necessary to

solve the transcendental equation (5.3.2). This equation was solved
using the Newton-Raphson method which requires specification of a guess
for x. It may be verified that the function H(x) has only one zero

when n << 1 and &/c > Tw/Te. The latter condition holds in most

plTe
practical problems of interest. Fig. 4 illustrates the behavior of

the function H(x) as a function of x and it is seen that x = 1 is the

obvious initial guess. Once x is determined Ré is known from (5.3.1)

and Rh is determined from the relation R = efRé.

5.4 General Solutions of the Modified Orr-Sommerfeld Equations

Eq. (5.2.1) can be written in the form
nw_ 2 n, 2 W 20 Ny e e = 2 = =
(W] = ofvy) of (wl agb)) R Gy - 1“’1 ia Ry (0] - afyy) (v (8) - ¢

(5.4.1)

"o 2 =2

Then Eq. (5.4.1) becomes

Rhw - { + ia R (ul(g) cl)} vy
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In order to reduce the above equation to an Airy differential equation

it is necessary to eliminate the first derivative term. Thus let
\ =
w, (5) = S (B, (E) (5.4.4)

Substitution of Eq. (5.4.4) into (5.4.3) leads to

il " v 2 - -
(28] Rhsln. [51 - RSy - {a] + 1oR,(u, (€) cl)}]
S 1

H + + =— H, =0
1 1 S, 11
(5.4.5)
Eq. (5.4.5) indicates that Sl should be chosen such that
' -
ZSl - Rhsl =0
or
R,E/2
Sl =e (5.4.6)
With this choice of S1 Eq. (5.4.5) takes the form
2
" - 2 & - =
Hl [ 4 + ] + ialRl(ul(g) Cl) Hl 0 (5.4.7)
Defining R%
— + o? + ia.R (u (&) - c;)
4 1 il i1
6 (8) = - 7T (5.4.8)
s (a,R,0')
1171
where 4. is a constant and carrying out the transformation of

i !
independent variable in Eq. (5.4.7), the result is

d?h

1
e gqhy = 0 (5.4.9)
dgl

R

sakic
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where

hl(cl) = Hl{e(cl)} (5.4.10)

Eq. (5.4.9) is the Airy differential equation encountered earlier in
Sec. 4.3. The experience gained in the solution of the zero mass
transfer problem suggests the following solution of (5.4.9),

By (2,0 = C,AL (g EY) + € Ai(L,ET)

or

H, (€) = C4Ai(z, (E)ET) + C,AL(c)(£)ET) (5.4.11)

Where E* is given by Eq. (4.3.12)

From Eq. (5.4.4)
R, &/2 -
w,(8) = e R [C3Ai{cl(a)E+} + C,Ai{z, (E)E }]

arnd hence Eq. (5.4.2) assumes the form

Ry&/2
"no_ 2 - -
V] - oy, =e [C3A1{gl(g)E+} + C,ai{c, (E)E }] (5.4.12)
The homogeneous solution of the above equation is
- 10, a%15 e
xpm Cle + C2e (5.4.13)

and the particular solution obtained by the method of variation of

parameters is

3
C3 RhE/Z e . Y EFIdE
¥y “_1 e sinh{a, (¢ - t)}Ai{z, (E)E*}dt

g
c £/2

+ l/eRht/ sinh{a, (§ ~ t)}Ai{z, (t)E-}dt (5.4.14)
ay 1 i
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Finally, the general solution of Eq. (5.2.1) is

&l
L c Rot/2 . 5 "
v (8) = cle“lg + Cye “15-+-;$J’; b sinh{a (€ - £))A1{z, (DEV)dE
3 e*
4 [ RyE/2 - s
+ — Je sinh{a, (£ ~ t)}Ai{zg, (£)E”}dt (5.4.15)
al 1! 1
g*

wlere Cl’ C2, C3, and CA are arbitrary constants of integration and

5* is selected such that

5 (%) =0 (5.4.16)

It should be noted that the same notation Cl is used in both zero
mass transfer and mass transfer cases, however, 41 has different
definitions as seen from Eqs. (4.3.4) and (5.4.8).

To obtain the general solution of (5. 2.3) the procedure described

above is repeated to yield the result

n

o c Rst/2 3 A .

by (n) = c5e°‘2” + Cge L L Eﬁ /e < sinh{a, (n - c)}Ai{t;z(t)E"'}dt
n n*

8 Rgt/2 ’ ESET e
+—=J e sinh{uz(n - t)}Ai{cz(t)E }dt (5.4.17)

n*

where 2
R, Tars
T + a; + iaZRZ(uz(t) - c2)

273 (5.4.18)

g,(t) = - :
(apRyuy)
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5.5 General Solutions of Temperature and Concentration Perturbation

Equations

(i) Solution of temperature perturbation equation for liquid:

Consider the homogeneous part of Eq. (5.2.2), viz.,

LA | B 2 . i A e
8] PrthO1 {al + 1alPrlRl(ul(£) cl)}el 0 (5.5.1)

Following the procedure of Sec. 5.4 the first derivative term is
eliminated from (5.5.1) and the resulting equation is converted into
an Airy differential equation. The latter is solved as before to give

the homogeneous solution

- R, Pr,£/2 + =
By = € h* 1 {chi(zl(t:)E ) + clOAi(zl(g)E )} (5.5.2)
where Rﬁpri ;
——r+ 0.% + ialPr R (U (g) - C )
] Tl 1
RS £5.5.3)
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Consider now the particular solution of Eq. (5.2.2). Substitution

for wl from Eq. (5.4.15) into (5.2.2) yields

"o [ 2 g -
61 PriRhel {oc + ialPrlRl(ul(E) cl)O1
c (3
= aie ok . o—a & 3 Ryt/2 - = o
PrlRlTl Cle 1° + Ce 1° + a]fe h sinh{a1(€ t)}Ai{cl(c)E"}dt
\ £ g*
Cof R E/2 5 S il s8
+—e h sinh{al(€ - t)}Ai{cl(t)E }dt (5.5.4)
g*
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The general solution of Eq. (5.5.4) may be written

where T

= A' T T T T
el 61H + PrlRlTl{ClJl + C2J2 + C3J3 + C“JQ}

where Jl’ 32, 33, and 32 are particular integrals obtained by the

method of variation of parameters,

i.e.
-4 =[§1(£)y2(a)w—(EZZ(:‘:)yl(a i i
¥ ~
2 Eyl(i)yz(e:f - ¥,y () " eni/2 | y
I3 4 -[ ) fe sinh {a, (€ - f)}Ai{;l(r‘)Ei}de
g* i (5.5.7)
where
Vi 2 ™ eRhPrlE/zAi{zl(a)Ei} (5.5.8)

and the Wronskian of Y1 2 is defined by
"-

is constant for the linear temperature profile in Eq. (5.1.6).

(5.5.5)

Wiy, (£),y,(E)} = y, (€) - ¥, (&) —57— (5.5.9)

dt

Combining Egs. (5.5.8) and (5.5.9) and simplifying, it may be

verified that

RhPr1E dzl(t)

w{yl(E),yz(E)} = e T W{Ai[zl(E)E+], Ai[zl(E)E"]} (5:5:10)




Differentiating zl(E) in Eqe (5.5.3) wir.t. t

dz. (t)
1 LA Ay 2/3 =
i i(alPrlRlul) (0575211

Also, the Wronskian in (5.5.10) is given by (Ref. 44)

i

> (5.5.12)

w[Ai{zl(E)E+}, Ai{zl(E)E'}} =

Introducing the expressions in Eqs. (5.5.11) and (5.5.12) into Eq.

(5.5.10) one gets

2/3 RyPryt
F8_EnPEy

P e
W(t) = 21T(alPrlRlu1 (5.5.13)

It is now necessary to evaluate the integrals (5.5.6) and (5.5.7)
with the help of Eqs. (5.5.8) and (5.5.13). The end results of these

manipulations are given below.

£
R Pr 2
2me h lg/

e Ai{z, (£)EY}Ai{z, (§)E™}
1,2 n,1/3./.{ 1 1
(alPrlRlul)

&*

RhPrl 1

-Ai{zl(E)E"}Ai{zl(g)E"'}}e(ial- R (5.5.14)
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(alPrlRlul)
—Ai{zl(E)E’}Ai{zl(E)E+}] X
€.
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Finally, the general solution in Eq. (5.5.5) can be written in a

slightly different form as

- RhPr1€/2 g + : : -
91(5) =e C9A1{zl(€)E } o+ ClOAl{zl(E;)E }
ZnPrlRlTi
+ RN ﬁ')1/3 ClJl(i) + CZJZ(E) P C3J3(€) + C4J4(£)
B 5.5.16)
where
£ RhPrl :
I 58 = /e(ial = F (E58)de (5.5.17)
3 o E [
=R Prjt/2 = Ry T/2 o N L
I 4(6) = [e E Fl(t;a)[e sinh{al(t -T)}Ai{cl(T)Et}det
(5.5.18)
with

F(E;8) = Ai{z (E)E*}Ai{z) (£)E7) - Ai{zl(g)E+}Ai{zl(£)E'} (5.5.19)
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and
Cl(t*) =0 (5.5.20)
z,(€%) = 0 (5.5.21)

(1i) Solution of temperature perturbation equation in gas-vapor:
Following the procedure described above, the general solution of

Eq. (5.2.4) is

Ran/2 s
8,(n) = e CnAi{zz(n)E } + € Ai{z, (N)E }
ZWRZ%Z
+ —————jf—77§' CSJS\n) + C6J6(n) + C7J7(n) + C8J8(n)
(aszuz)

(5.5.22)

where

sinh{a (t - T)}Ai{cz(r)E }dtdt

5 ;
/ (tap - 5t F,(£;n)dt (5.5.23)
_Rét/ﬁ

4; .8 ‘fe f

*
n (5.5.24)

with

Fz(E;n) = Ai{zz(E)E"'}Ai{zz(n)E'} -Ai{zz(n)E"}Ai{zz(E)E‘} (5.5.25)
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and

2,(t*) = g, (n*) = 0 (5.5.26)

It should be noted that zz(t) and cz(t) are identical since the
" andtl number for the gas-vapor is assumed unity (See Eq. (5.4.18)).
(iii) Solution of the concentration perturbation equation

Applying the procedure in (i) to Eq. (5.2.5) would give the

general solution

Rsn/2
x(n) =e g C13A1{z2(n)E+} + C14Ai{22(n)E-}
ZHRzi
+ ._-x——ﬁé— CSJS(n) + C6J6(n) + C7J7(n) + C8J8(n)
(ayRyUy)

(5.5.27)

where JS’ J6’ J7 and J8 are defined by Eqs. (5.5.23) and (5.5.24).

The auxiliary equations (5.5.25) and (5.5.26) hold in this case also.

5.6 Application of Boundary Conditions

The boundary conditions (5.2.6) - (5.2.20) involve derivatives of
wl, wz, 61, 82 and x. These differentiations necessitate the use of
Leibniz's rule since the variables £ and n occur in the limits of
integration. Appendix F contains the expressions for the required

derivatives.

eI

RO, = 2Ty et o SR ASAT A
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Substituting Eqs. (D.1) - (D.7), (D.11) and (D.16) into the

! boundary conditions (5.2.6) - (5.2.10) and carrying out the necessary

algebraic simplifications, the resulting equations are

j ae lc + a el g, + L€, + I,0, =0 (5.6.1)
! ale_al Cl - ae™l C2 + I3C3 + 14c4 =0 (5.6.2)
, a2e°‘2 Cg + aze'“Z Co + I5C; + L Co =0 (5.6.3)
| a2e°‘2 Cg - uze'“?- Cg + L6, + 105 =0 (5.6.4)

= = _ . i o
ualCl ualC2 + EIllC3 + ﬁIlZC4 eaZCS ea2C6 eIlsc7 511608

‘ : Ry R
; - g o ot 0 —
; = ial(ﬁul euz) + al(azekz @;U Rl) (5.6.5)

2Ga2C, + zmxic

11 2

e +y _

+ {uAi{Cl(O)E } 2(1119 , c3
&Y Sl e - 2 s Z

+ luAi{Cl(O)E } Zalllo ’C4 27ie Co 2iie C6

el A -2 2 - )
+ ' He Ai{;Z(O)E } + 27e a2113 lC7 + ( He Ai{CZ(O)E } + 27 a2114 08

=0 (5.6.6)
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+ ig‘ %-:R-E-Ai{cz(())ljl‘} +%—2-Ai'{c2(0)E‘}f;2E‘

é + ai(;f - ;Eg) B~ 1a2(ﬁz(0) - c2)116] + 33%3259 Cg

] ¢ : 2

i + '%T}—ZM{ZZ(O)Eﬂ Gg ¥ = {—ffo—)-}—zm{zz(o)r} €1y

| + | ( oy Ailz (0)E+)] + [-).(%55» Ai{zZ(O)E"}]CM =0 (5.6.15)
where

“TG) 1, (0)}

The definitions of integrals I1 - 148 are listed in Appendix E.

As in the case of zero mass transfer the boundary conditions
(5.6.1) - (5.6.7) and (5.6.9) - (5.6.15) form a system of linear

algebraic equations of the type

[A(cl)]{c} = {V(c)} (5.6.16)

where [A)is a 14 x 14 coefficient matrix of the left hand sides and
{V(cl)} is a 14 x 1 column vector of the right hand sides. The
remaining equation represents the characteristic function for the

mass transfer problem and can be written in the form
G [cl;{C(cl) }] = a,u [“101 + cle‘,Z - 19C3 - IlOCl&]

—ulp [a2C5 + QZC6 - 11307 - IlloCB]




132

-iuiuZ[K(GI(O) - cl) - 3(62 (0) - cz)]- 0
(5.6.17)

» or in a condensed notation

G [cl;{C(cl)}] = {C(cl) }T{U(cl)} —iuiaz[_\;(ﬁl(O) - cl) - '5(\}2(0) - cz)]

(5.6.18)
where
-1
{C(cl)} = [A(cl) ] {V(cl)} (5.6.19)
and
. 5 = L, T e
{U(cl) } {alazu aqa,u a,ulg ayul; o
:
3
-Qlazp- -alaZE al‘EIlj 0-13114} (5.6020) "—
In Eqs. (5.6.17) and (5.6.18), ¢y is again given by Eq. (4.1.15). g

As in Chapter IV G is the characteristic function and c, is the

eigenvalue. The function G can be expressed as

G(ays EsHs Ky P, Ep, R,, W,F, E, R, R, Pry, A, K; ¢)) =0 (5.6.21)

The stability problem is therefore reduced to locating the zeros of
an analytic function G in the complex ¢y plane. The method of zero

finding is described in the next section.

5.7 Outline of the Eigenvalue Iteration Procedure

The zeros of the characteristic function G are determined

PSRN NN




numberically using methods similar to those of Sec. 4.5. The 1

important steps are listed below. i

(1) The initial guess for the eigenvalue ¢y is obtained from the

solution of the zero mass transfer problem. This restricts the inves-

tigation to the effects of mass transfer on particular modes and the
question whether mass transfer itself introduces any stability modes

is left unanswered. The latter statement will become more meaningful

in conjunction with the developments of Chapter VI.

(ii) For given parameter values in Eq. (5.6.21) and the guess value
Cqs evaluate the integrals I1 through 148 using the integration procedures
described in Appendices E and G. S

(111) Generate the coefficient matrix (A] and obtain its inverse. The
IBM routine MINV was used for this purpose with minor modifications.
Also generate the column vector {V}.

(iv) Determine the constants of integration {C} by computing the
product [A]-l{V}.

(v) Calculate G in Eq. (5.6.17). Usually this equation will not be
satisfied with the first guess for e

(vi) Gbtain an improved approximation for c, by employing the Newton-
Raphson iteration technique described in Appendix I.

(vii) Compare successive values of c, for convergence within a

1

prescribed tolerance on real and imaginary parts. Repeat steps (ii) -

(vi) until dcsired convergence is reached.
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6.1 Description of Data

The experimental data of Craik22 was chosen for numerical compu—
tations. The present theoretical model does not match the experimental
conditions perfectly and hence some of the parameters in Craik's inves-
tigation were suitably 'corrected'. For instance, the experiments were
conducted in a closed rectangular channel 1 inch high and 6 inches wide.
The air flow was provided by a large fan which drew air through the
apparatus. Water was introduced into the channel at the entry section
and formed a film on the bottom made of plate glass. Consequently the
velocity profile in air was parabolic but the liquid velocity profile
was very nearly linear. It was assumed in the present analysis that
the velocity profile in the gas is linear and has a thickness 6. There-
fore, in order to adapt Craik's data to the present model, § was chosen
to be half the difference between channel height and liquid film thick~
ness. The velocity profile between the interface and y = § was assumed
linear.

Another important correction to Craik's data was made in regard to
the value of gas viscosity. The air flow in his experiments was turbu-
lent and hence an augmented value of laminar viscosity must be used.
This is accomplished as follows. Craik measures the steady-state inter-
face velocity u g and determines the film thickness h by measuring the
volumetric flow rate of liquid. This permits one to compute the inter-

facial shear cn the liquid side using the expression
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3
Hqu “
1°1f i
Ty w =SS (6.1.1)

Since this value of shear stress must equal the interfacial shear on

the gas side, it follows that

H,u
- ~ 2 e 3
Tl = Tz - 6 (6.1.2) (
and therefore, %
§ g
Hy =-i‘-———ue My (6.1.3)

Since the gas Prandtl number Pr2 is assumed unity, the thermal con-

ductivity k, of the gas for turbulent flow is calculated using the

2

relation

ky = koo Fp (6.1.4) :
where the factor Fk is given by 1
H 3
F, - 2 (6.1.5) ]
2 2am

In Eqs. (6.1.4) and (6.1.5) k denote molecular thermal

2%am ™9 M2 gan
conductivity and viscosity respectively.
The list of various dimensional and non-dimensional parameters

used in numerical computations is contained in Table II at the end of

this chapter. The data in this Table corresponds to both air and

water at room temperature.




137

6.2 Root Location Procedure for Zero Mass Transfer Problem

One of the eigenvalues (or modes) can be immediately calculated
from the long wavelength disturbance solution of Sec. 4.2. Thus sub-
stituting for € and p from Table II into the approximate expression

(4.2.19) and the exact expression (4.2.18) the results are

¢ = 1.086 + 0i
approx

for ay << 1 and a, << 1

i 1.064 + 01

Starting with the guess c, = 1.086 and choosing @ = 0.001 (hence

1
a, = al/e = 0.023) the Newton-Raphson procedure yields the result

¢y = 1.06438 - 0.00774 for a; = 0.001

Once ¢ is known for a given @ it is a simple matter to trace this
mode by varying ay gradually.

Identification of other stability modes is somewhat complicated
and tedious. The reader is referred to Sec. 4.6 in this connection.
An illustrative example of approximate location of roots of the charac-
teristic equation (4.4.11) is given in Figs. 5 and 6. Suppose it is

desired to find the eigenvalues (i.e. roots of the characteristic

equation) in the interval 1 <c, <2 and -1 S0y = 0. Then the

function G in Eq. (4.4.16) is calculated at ¢y = 05 =0h 1, =025 sy
-1.0 for each ¢y = 1.0, 1.1, ..., 2.0. The next step is to plot

Re(G) and Im(G) against ¢y, with c . as a parameter. The results are

1i




shown in Figs. 5 and 6 for the case a; = 0.05. This choice of a, was

dictated by the fact that the system is expected to be well-behaved for

long wavelength disturbances. It is seen that both Re(G) and Im(G) go

to zero around ¢y = 1.32 - 0.4i and ¢ = 1.84 - 0.5i. With these

guess values the Newton-Raphson iteration gives the exact results

Ey = 1.318 - 0.4051

for a = 0.05

¢y = 1.842 - 0.505i

and

This process of root location was carried out in the interval

<4 and -2 < c,, < 2. The following spectrum of eigenvalues,

VE% 14

1r

ordered according to real part, was obtained:

For a = 0.05,

0.273 - 0.1974i

= 1.318 - 0.405i

0
[

= 1.411 + 1.0531i

c,, = 1.842 - 0.5051

= 3.263 - 1.2201i

[e]
|

Note that only ¢,y has a critical point inside the liquid (i.e.,

- c < 1.) A random search for an eigenvalue with ¢ip > 4 led to the

1lr

root

c,, = 17.48 + 0.540i

16




139

It should be emphasized that this eigenvalue was obtained by supplying
random guesses (with ciy > 4) and was not obtained through the

systematic search procedure meationed earlier.

6.3 Amplification and Phase Velocity Curves for Zero Mass Transfer Case

It was stated in Chapter I that the stability or instability of
the interface depends upon whether an infinitesimal disturbance of a
given wavelength grows or decays with time. As pointed out in Sec. 2.7
positive wy (or ci) corresponds to an unstable interface and negative

w, corresponds to a stable interface. With these comments in mind one

i

seeks to know how wi (or more correctly alcli) varies with the distur-
bance wave number k(= 2m/A). This requires that the modes obtained in

Sec. 6.2 for a, = 0.05 be traced as a, changes continuously. Each of

1 1

the six modes mentioned in the previous section was traced by varying

a, very gradually. Much care needs to be exercised during this process

1
since a sufficiently large change in a, may result in switching to a
different mode. This exercise was carefully done and the results are
presented in Figs. 6 through 11 as amplification and phase velocity
curves. The plots of phase velocity against wave number have been

included for the sake of completeness and also to facilitate comparisons

with the well-known water wave phenomena such as gravity-surface tension

waves and Kelvin-Helmholtz waves. The curves of amplification have been
presented in the form @€y VS 0 and the phase velocities are plotted

and a,c are

It may be recalled that @€y 1%1r

in the form a.c vs o

17 1r i

proportional to wy and w, respectively.




A very important point needs to be brought to the attention of

the reader. Only those modes discovered for a, = 0.05 in the previous

1
section have been traced as ay varies. It is conceivable that more
stability modes 'creep in' as ay increases. In fact, some evidence
was obtained during the numerical investigation which showed that

this is true. It should soon become clear that the six modes in the
present investigations have rather distinct characteristics. These
are discussed below.

(i) TFigs. 6a and 6b represent amplification and phase velocity
characteristics for the eigenvalue c11° This eigenvalue is of some
interest because it is the only one with a critical point inside the
liquid. Fig. 6a shows that the imaginary part of 1 is always less
than zero and hence this mode is stable for all - The curious dip
around a; = 0.65 is not explained. The phase velocity plot of Fig. 6b
also exhibits sharp changes at this value of o - The phase velocity is
generally increasing with a;-

(ii) The eigenvalue o is interesting because it was the only one
predicted analytically. It may be recalled from Sec. 4.2 that this
mode (at least for small values of al) has a physical interpretation
that it depends only on the thickness ratio ¢ and viscosity ratio W,
and it is independent of Reynolds, Froude and Weber numbers. The
amplification curve in Fig. 7a shows that this eigenvalue is also
stable for all ay and displays a small dip around Ry 0.6. The
foregoing observations suggest that this eigenvalue can be associated

with the Tollmien-Schlichting mode of stability (Sec. 1.21i). The




phase velocity (Fig. 7b) increases continuously with @y but at a

much faster rate than the c11 mode .

(iii) The eigenvalue c 3 was found to be the only unstable mode at 3

a, = 0.05 and deserves attention for this reason. The variation of

amplification rate (Fig. 8a) shows that this mode is unstable for all

a4y (except at o = 0 where it is neutrally stable). It is seen that
the rate of amplification increases rapidly beyond ay = 0.5. The
phase velocity plot of Fig. 8b also displays a sharp change around
this value of - The phase velocity increases with ey in this case
also.

(iv) Fig. 9a represents amplification curve for the eigenvalue Cié'
It exhibits a unique characteristic in that this mode is stable at
small values of ay and unstable at large a . In other wordc. there
are two distinct regions, one stable and the other unstable, separated
by a neutral stability point. With the exception of 16 (which will
be discucsed shortly) none of the other modes demonstrate this behavior.
It appears that this mode is the same as the one obtained by Bordner,
et. a137 using the data of Cohen and HanrattyBo. It is interesting to
compare the phase velocity for this eigenvalue with the speed of
propagation of surface tension - gravity waves and Kelvin-Helmholtz
waves (Fig. 9b). It is observed that long wavelength disturbances
(i.e., small al) of this mode propagate with nearly the same speed as
Kelvin-Helmholtz waves. The mode under consideration can be asso-

ciated with the class C (or Kelvin-Helmholtz) instability of Benjamin9

ORI
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and Landahllo. This eigenvalue, therefore, is called the modified

Kelvin-Helmholtz mode in the present investigation. The expressions
used for calculating the speeds of surface tension-gravity waves and

Kelvin-Helmholtz waves, in dimensionless form, are given below:

1-7+ aiWZF2
coth(al) + 7 coth(a2

)] surface tension-gravity wave
2 (6.3.1)

e
coth(al) +'U coth(az)
I

- coth(al) + coth(az) &
1/2
= ] =y Ay
1 {1 P + afW°F } - o (1 E) cotb(al)coth(az)
le coth(al) £l coth(az) {coth(al) + 0 coth(az)}2

Kelvin-Helmholtz wave (6.3.2)
These equations hold for two fluids bounded between two walls at
y = -h and y = § respectively.
Finally, it is observed from Fig. 9a that instability sets in
when a, is above 0.145. Corresponding to this value of @1y Cqp T 1.99

1
from Fig. 9b. The dimensional value of c is then 13.5 cm/sec and

1r
compares favorably with Craik's experimental value of 11.9 cm/sec at
the onset of instability.
(v) The amplification and phase velocity curves corresponding to the
eigenvalue ¢ g are plotted in Figs. 10a and 10b respectively. The

phase velocity increases with oy similar to the other modes and complete

stability prevails for all a; as shown by the amplification plot. Thus




this mode does not display any peculiar characteristics.
(vi) The eigenvalue 16 is a representative fast moving disturbance
and therefore merits some consideration. Fig. lla shows that the ampli-
fication curve oscillates rapidly with aq and is somewhat irregular.
Thus there are several regions of stability and instability separated
by neutral stability points. The phase velocity curve (Fig. 11b) also
exhibits irregular behavior. In fact, the phase velocity decreases

with a, over a small range.

1
The above description of six different stability modes shows that
amongst the slow moving disturbances the modified Kelvin-Helmholtz

mode is the most interesting. Therefore, further attention is concen-

trated on this particular mode.

6.4 Effect of Neglecting Instability in Gas

It was meationed in Secs. 1.2 and 2.1(2) that the validity of the
frequently-made assumption of neglecting the phase speed in gas distur-
bance equations is doubtful. To examine this question the zero mass
transfer problem was solved putting ¢y = 0 in gas disturbance equations
(4.1.2), (4.1.9) and (4.1.11). This amounts to assuming the disturbance
in Eq. (2.6.7) to be of the form

qu(X,y,t) = qz()’)eikx (6.4.1)
This exercise required only minor modifications in the Newton-Raphson
procedure and in the computer program. As pointed out in the previous

section, only the modified Kelvin-Helmholtz mode was considered. The
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results of these computations are shown in Figs. 12a and 12b, again

in the form of amplificatiun and phase velocity curves. The amplifi-
cation plot for ¢y # 0 is a portion of Fig. 9a. A comparison of the
curves for <, # 0 and ¢y = 0 reveals the following significant results.
(i) The assumption of neglecting the instability in gas has no
effect at low wave numbers (i.e. for disturbances with long wavelengths)
and affects the neutrally stable wave number only slightly.

(ii) Beyond the neutrally stable wave number the above assumption
results in underestimation of the amplification rate.

(iii) When the wave number is sufficiently large (e.g. a > 0.4 in

Fig. 12a) the c, = O assumption predicts stability when the interface

2
is actual.iy unstable.

Fig. 12b shows that there is no appreciable difference between

phase velocity curves for the cases ¢, # 0 and c, = 0. Another impor-

tant aspect of the assumption under question needs to be investigated.
It was pointed out in Secs. 1.2 and 2.1(2) that Benjamin21 established
the criterion which allows one to make the rigid wavy wall (or c, = 0)
assumption. This suggests calculation of Benjamin's parameter in Eq.

(2.1.1) for different values of o This parameter written for the

1
gas (i.e. fluid '2') is

B = - << 1 (6.4.2)




. 2/3
m, = {quzu} (6.4.3)

Fig. 13 shows a plot of Bp against a; . It is seen that Bp << 1

holds only for very small values of o (typically @) < 0.1). When

> 0.2 Benjamin's parameter can no longer be considered small com-

e

pared to unity. This discussion explains why the amplification curves

for ¢y # 0 and c, = 0 display characteristically different behavior

when al > 0.1,

6.5 Effects of Interface Mass Transfer

A typical example of the effects of interface evaporation on the

modified Kelvin-Helmholtz mode is shown in Figs. l4a and 14b. Craik's

data in Table II have been used in these computations. It should be

noted that the evaporative mass transfer occurs at room temperature

(68 F) and consequently the mass transfer Reynolds numbers Rh and Rd

are very small. The amplification and phase velocity curves with and

without mass transfer are included in Figs. l4a and b. It is observed

that both amplification curves coincide in the stable range and the

neutrally stable wave number is very slightly affected. When @y is

beyond the neutrally stable value, however, interface mass transfer

results in an increase in amplification rate. It can therefore be

concluded that the effect of mass transfer is destabilizing for this

particular stability mode.
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A comparison of phase velocity curves in Fig. 14b shows that

AN LA st asia, . DIt

mass transfer leads to a small increase in the phase velocity. In
both Figs. l4a & b, the mass transfer effects seem to become more
significant as oy increases. This is understandable since a highly |

rippled interface (ul large) causes increased mass transfer pertur- ;

bations.
The mass transfer curves are terminated at a; = 0.25 because
the Newton-Raphson procedure failed to converge beyond this point.

Further solutions were attempted using a conjugate gradient method

(a variation of the method of steepest descent). This method is
extremely slow because it calls the mass transfer program a large
number of times. The workability of this method was tested for

a, < 0.25 during the last stages of the present investigation.

1

Therefore, eigenvalue solutions for ay > 0.25 could not be included

in the present report.

6.6 Suggestions for Future Investigations

The experience gained in the present investigation suggests that
the following areas of the stability problem need further study.
(i) The different modes of stability should be classified according
to their physical interpretations. The works of Benjamin9 and Landahl10
should serve as models in this quest. It appears that a stability mode

associated with a particular physical mechanism could be 'singled out'
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! from the rest by employing some approximate technique. An insight
into the physical phenomena is necessary to understand which mode;

i occur in practice.

(ii) A combination of physical and mathematical reasoning is re-
quired to understand the structure of the entire eigenvalue spectrum.

3

Recent investigations of Mackl show that the eigenvalue spectrum of

a laminar boundary layer, with a discontinuous first derivative in
velocity, is infinite.

(iii) The work on the liquid film stability problem must eventually
include the effects of mean velocity profile curvature. Miles'2 work
shows that velocity profile curvature plays an important role in the
energy transfer mechanism. Since the Orr-Sommerfeld equation cannot

be solved exactly for a general velocity profile, a finite difference
approach will have to be adopted. Therefore, one may consider solving
the present linear velocity profile problem using finite differences as
a first step. This exercise will help in gaining familiarity with the
problems of eigenvalue location.

(iv) The stability problem with mass transfer needs to be studied in
greater detail, even for an incompressible air flow. For instance, the
effect of mass transfer on different stability modes should be investi-

gated. Further numerical investigations should be carried out with the

present model for higher rates of mass transfer. An important aspect
of this problem, not covered in the present work, is whether the physi-

cal process of mass transfer itself introduces any modes of instability. !




(v) Finally, one wishes to solve the problem of compressible boundary

layer over a liquid film. The processes of heat and mass transfer will
undoubtedly be extremely important, especially when the air flow is
supersonic. The latter case is interesting because multiple stability
loops are known to exist when the mean flow in the boundary layer

becomes supersonic.
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TABLE 11

LIQUID PROPERTIES AT 528 DEG R

Liquid = Water
. Molecular Weight = 18.0
Latent Heat of Vaporization = 971.65 Btu/lbm.
Coefficient of Viscosity = 2.107 x 10 ° lbm-sec/ft2.
Density = 1.937 slug/ft3.
Specific Heat = 1.00 Btu/lbm-deg R.
Thermal Conductivity = 9.611 x 10 ° Btu/ft-sec-deg R.
| Surface Tension = 4.926 x 10 ° 1bf/ft.
:E Liquid Layer Thickness = 1.755 x 10—3 ft.

Wall Temperature = 528.0 deg R.

GAS PROPERTIES AT 528 DEG R

Gas = Air

Coefficient of Viscosity = 5.549 x 10 © 1bf/ft2.
Density = 2.340 x 10 3 slug/ft3.

Specific Heat = 0.24 Btu/lbm-deg R.

Thermal Conductivity = 6.100 x 10° ° Btu/ft-sec-deg R.
Velocity at Edge of Boundary Layer = 19.66 ft/sec.
Static Pressure = 2.116 x 103 1bf/ft2,

Temperature at Edge of Boundary Layer = 528.0 deg R.
Boundary Layer Thickness = 4.079 x 10'.2 ft.

CHARACTERISTIC NON-DIMENSIONAL PARAMETERS

Liquid Layer/Boundary Layer Thickness: ¢ = 4.302 x 10"2
Gas Viscosity/Liquid Viscosity: W = 0.263
Gas Density/Liquid Density: p = 1.208 x 10°
Gas Specific Heat/Liquid Specific Heat: E% = 0.240

Gas Thermal Conductivity/Liquid Thermal Conductivity: k = 0.635

3
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A

u Liquid Reynolds Number: R, = 35.54

) . Gas Reynolds Number: R2 = 338.2 £
Mass Transfer Reynolds Number for Liquid: Ry = 2.95 x 10
Mass Transfer Reynolds Number for Gas: R‘5 = 2.60 x 10—2
Liquid Prandtl Number: Pr, = 10.04

Gas Prandtl Number: Pr, = 1.0

Liquid Weber Number: W = 5.46

Liquid Froude Number: F = 0.93

Gas Euler Number: E = 2.34 x 103
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The following general conclusions can be drawn from the present
analysis of liquid film stability.
1) The stability of an interface between two fluids is charac-
terized by the existence of several modes of stability. These modes
may be completely stable, unstable or may change from stable to un-
stable {(or vice versa) as the disturbance wave number is varied. Two
modes were distinguished plvsically in this investigation, one asso-
ciated with the Tollmien-Schlichting instability and the other with
Kelvin-Helmholtz instability. It should be pointed out that the
foregoing observations hold for the case of linear velocity profiles
in both the gas and the liquid. The assumption of linear profiles is
introduced in order to isolate the effects of mass transfer on stability.
Further research is recommended to study the eigenvalue spectrum for
curved velocity profiles.
(ii) The customary assumption of neglecting instabilities in the
incompressible gas motion is valid only for very small values of the
disturbance wave number (al << 1), When the disturbance wave number

is moderate, i.e., a, = 0(1l), such an assumption not only leads to a

1
gross underestimation of the amplification rate (for the modified
Kelvin-Helmholtz mode) but can even predict incorrectly a stable
interface. Again, these conclusions apply to linear velocity profiles

in both fluids and need to be extended to include the effects of

velocity profile curvature.
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(iii) Limited computations, for very small mass transfer rates,
indicate that interface evaporation has a negligible effect on the
modified Kelvin-Helmholtz stability mode for very small disturbance

wave numbers and has a destabilizing effect when the wave number is

moderate.
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APPENDIX A

ENERGY EQUATION FOR LIQUID

The equation of state for a liquid treated as a pure substance

is of the functional form

(A.1)

where the notation of Chapter II is preserved. A small change in

the enthalpy h

1
dh. oh
dh s dp +—:l dr
1”3 17 9T 1
1 T T
1 51

for a closed system can be expressed as

(A.2)

Modifying Eq. (A.2) for a differential control volume moving with a

fluid particle the result (stated without proof) is

Dh, . oh, | DB b ah,| DT,
Dt P Dt dT Dt
l'f 1/
1 Py
For a pure substance
i
—— = C
9 1_ pl
3

(A.3)

(A.4)
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and

—| == (- 8,T s
7,1 "oy (7 BT (a.5)
T

| 1

where Bl is the coefficient of volume expansion and c_, is the specific

pl
heat at constant pressure. Substituting Eqs. (A.4) and (A.5) into Eq.

(A.3), using the definitions of substantial derivatives and combining

with Eq. (2.3.4)', the result is

(_ ‘ DT, 0.

= 1 o=
Prfei Be “FitiTe FRTh et
where viscous dissipation is neglected. The discussion in Chapter I
indicates that the pressure gradient in the present problem should be
small. Also, the term BiTi is small (e.g. for water Bl = 304 x 10_6/
deg C and forlfl in the range of 100 deg C, BlTi = 0.03) and there-

fore the first term on the right hand side of Eq. (A.6) can be ne-

glected. This equation then reduces to

. b
plcpl e klv T1 (A.7)

which is a compact form of Eq. (2.3.4).




APPENDIX B

DERIVATION OF SHEAR AND NORMAL STRESS EQUATIONS

Consider equilibrium of a triangular element of fluid at the
interface (Fig. B.l). Resolving all the forces normal and tangen-

tial to As and summing up, the following expressions are obtained:

o= oxxsin2¢ + oyycosz¢ - thysin¢cos¢ (B.1)
1
T = E(oyy - oxx)sin2¢ + rxy(cosz¢ - sin?¢) (B.2)

For an incompressible fluid the stress tensor is given by

Ju
qxx P+ 2y %

v
(o] = -p + 2y — B.3
vy P ¥ 3y (B.3)

du A
Txy [3y i ax]

From the geometry of Fig. B.l, tan¢ = Ny» SO that

Nx

v

Qa+ ni)

and (B.4)

cosd =

a+ ni)l/2




Introduction of Eqs. (B.3) and (B.4) into Eqs. (B.l) and (B.2) yields,

after some simplifications,

g ==p +

2y

a+ ni)

and

[
+
]
IS RS

=2

3u
oy

u 2
X nx

+_31] X [ia
Tl a+ n2) %y

These expressions are utilized in Chapters II and IlT.

v
+ -3_;] (B.5)

(B.6)
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FIG. B.1 EQUILIBRIUM OF A FLUID ELEMENT AT THE IN':RFACE
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APPENDIX C

DERIVATIVES OF GENERAL SOLUTIONS WITHOUT MASS TRANSFER

Derivatives of tpl(é;) and lbz(l'l) in Egs. (4.3.17) and (4.3.19)

———

w.r.t £ and n, obtained using Leibniz's rule are

2
v &) = clmle"‘lg - Cyoge 1t 4 C3[cosh{al(€ - t)}at{c; (e)E Mt

*

g

+ Cafcosh{al(é ~ £ }Ai{cl(E)E-}df:

5*
(€.1)
£
w'l'(g) = Claiealg + Czoz%e-'ml’g + C3alfsinh{al(€ - E)}Ai{l;l(E)E+}dE
€'k
g
+ C3A1{;1(g)E+} + C4alfsinh{al(€ - E)}Ai{cl(E)E‘}dE
5*
+ CAAi{cl(E)E‘} (C.2)
£
‘P;_'(E) = Claiealg - Czonie_o‘lE + C3ai/cosh{al(£ - t) }Ai{cl(E)E+}dE
o
+ C3Ai'{c1(§)E+};iE+ + CAai cosh{a, (£ - E)}Ai{cl(E)E'}dE
6*
3 + C4Ai'{cl(€)E'}CiE' (C.3)
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Similarly

n

@2(n) - Csazeazn = C6a2e_a2n + C7J/;osh{u2(n - E)}Ai{cz(E)E+}dE
*

n

3

+ Cg [ cosbla,(n - E)}Ai{cz<i)s‘}d£

i (C.4)

n
- B 2,020 2,=%N T o
wz(n) Csuze + Cgaje + C7a2[sinh(a2(n t)}Ai{Cz(t)E }de

*
n

n
+ C7Ai{C2(n)E+} + C8a2[sinh{a2(n - E)}Ai{cz(E)E'}dE

n
+ Cghilz, (nE} (c.5)

n
V.(n) =¢C a3e®2" - ¢ a3e™™" 4 a2 Jcosh{a (n. - t)}ai{zg,(t)Et}dt
2 2 62 72 2 2

n*

n
+ c7A1'{;2(n)E+}&2E+ + Csa%[cosl){uz(n - E)}Ai{;Z(E)E‘}dE
*

n

+ CgAi'{z, (n)E~}g E” (C.6)

where it follows from Eqs. (4.3.4) and (4.3.20) that
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O e ~ 1/3
Cl 1(alRlul
and

- 2 - 1/3
% ™ milaR,u,)

(C.7)

(C.8)




APPENDIX D

DERIVATIVES OF GENERAL SOLUTIONS WITH MASS TRANSFER g

Differentiating Eqs. (5.4.15) and (5.5.16) w.r.t. £ and Egs.
(5.4.17), (5.5.22) and (5.5.27) w.r.t. n using Leibniz's rule; and

carrying out the necessary simplifications. the results are

-
-

kUi(E) = Clﬂtlemlg - Czale-ulg’ + CB'/eRbt/2 coshia, (¢ - E)}Ai‘.cl(E)E*’}dE {
Sk

-

+ C(“/eRht\/2 cosh{al(E, - t) }Ai{Cl(E)E‘}dE

%
5

(D.1)
g

Vi) = Claiealg + Czaie—alg + Cya eRnt/2 sinh{a, (¢ - E)}Ai{cl(E)E“'}dE

2

+ C3eRhE/2 Aifc, ()EF) + CaalfeRht/?' sinhla) (6 - ©) baifc, (B)E*}dE

*

&
+ ¢,e"%/2 ai(g, (6)E) (0.2)
€
W']'_'(E) = Clctieml5 - szieumlg + C3a§ eRhE/2 cosh{al(E, - E)}Ai{f,l(E)E"}dE

2

+ cpefnt/2 [R*‘ AL{z) (E)E*} + Ai'{cl(E)E+}C'lE+] +

2z
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5 ~
+ C4ai[enht/2 cosh{a, (£ - E)}Ai{;l(E)E'}dE
E*
R z/2| Rn % X
+ Ce né/ [—2—— Ai{cl(E)E }+ Ai'{cl(a)E'};iE] (D.3)
Similarly

n
xLZ(n) = Csa 2" L e e Y2" 4 C7feR5t/2 sinh{u2 (n - t) }Ai{;2 (t)Et)dt

2 62

"\*

n
+ CsfeRdt/z sinh{az(n ~ E)}Aifcz(E)E‘}dE

n*

(D.4)

n
Z[eRGt/z sinh{al(n - E)}Ai{cz(E)E+}dE

. 2 azn 2 —azn
wz(n) Cgaze + Cgafe + Cja

n
R o 2 ~
+ C7e Gn/ Ai{cz(n)E"'} + CBGZ/ERGt/Z sinh{az(n - t)]‘Ai{cz(t)E'}dt :

*
n

+

Cge"s"? at{z, (n)E") | (D.5)

n
asn -Qa9n R.t/2 ~ " ~ =
wz(n) = C5a23e 21 . C6a23e 20 4 C7a§/e st/ cosh{az(n - t)}Al{gz(t)E+}dt

n*

£

7

2

R
C eR<5“/2 [——5- Ai{cz(n)E"’} + Ai'{;?_(n)E*}&ZE*] *
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n
+ Csa%[eRGt/z cosh{az(n - E)}Ai{cZ(E)E’}dE

*

o G B2 38 e ) 4 at ") -] 6
g€ 5 2, (n) + Ai'{g,(N)E Jg,E (D.6)

v Ve R}\Prlg/z ' 1 + o+ i1 - _'
81(8) = e 2] { oA {2 (EVIEY + € ait 2 (D JE-)

0
2mPr, R, T'z!
l 1 l 1 ] 1 ~ 1 ~ ] '
+ ———————————;/3|C1J1(€) + CZJZ(E) + L3J3(€) + CAJA(g)}]
2y
(alPrlRlul)

+

Pr
eRhPrlE/Z [:‘n 1 {CgAi{zl(g)Eﬁ} + clOAi{zl(E)E'}}

ZnPrlRliizi
+ L C19,(8) + CyJ,(8) + C435(8) + CuJ, (8)
(alPrlRlul)
(D.7)
where
& Pr
I (E) = L 8
1’2 E o e Gl(tsg)dt (D' )
*
® i
33 416 =/§'Rh“1"/2 Gl(E;g)/eRhT/z sinh{a, (E - ©)}Ai{z (FE*}didE
~ %k
et - (0.9)
with
Gl(E;E) = Ai{zl(E)E+}Ai'{zl(g)E’}E'
—Ai{zl(E)E'}Ai'{zl(E)E+}E+ (D.10)

T
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and
2/ 3

' =
2] 1(a1PrlRlul) (D.11)

Similarly

éz Ré“/z [ 2{ cl Ai' {z (m)ETIEY + cl Ai' {z (M)E™JE™ }

2m %‘é
+ ——;RE—EZ—JC (n)+c (n)+CJ(n)+CJ(n)}J

Sy
(aszuz)

Rdﬂlz[z {CllAl{ZZ(n)E‘P} + ClZAi{zz(n)E—}]

2ﬂR2'1‘
}/3'05 (n) + Cgdg(n) + CoJ.(n) + CgJ (n)} (D.12)
(“2 3%
where
(ta, - __‘S £
5 6 gt e G, (E3n)dt (D.13)

’

57 8(\'1) -/e_RGE/ G (t; n)/ R‘St/z sinh{a (t = T)}Ai{l; (T)E }dtdt

*
n i

(D.14)

R —_—
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with

{
G, (E55) = At{z, (E)E )AL {2, (n)E"JE i
. -Ai{zz(E)E'}Ai'{zz(E)E+}E+ (D.15) ;
and f
. % 2/ 4
ZZ = —i(aszuz) (D.l6) i
|

Finally,

2n) = M4 [iz{ Cp4AL {2,y (MEFIEF + G a1 (2, (VEE=

2"“2;(22 § 1 . :
4+ — CSJS(n) G C6J6(n) + C7J7(n) + Cst(n)}

R
+ eRd“/z [-2—‘5- {cmAi{zz(n)E*} + ClQAi{zz(n)E‘}}

2wR2§
+ ——-————: T Cgdg(n) + CeJo(n) + CoJ,(n) + C8J8(ﬂ)} (D.17)
E (aZRzuZ)

with Eqs. (D.13) - (D.15) applying in this case also.
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APPENDIX E

LIST OF INTEGRALS IN ZERO MASS TRANSFER PROBLEM

The integrals I, through I._  in Eqs. (4.4.1) through (4.4.17)

1 16

are defined as follows:
-1

b ’fsmh{al(-l - E)}Ai{cl(E)Ei}dE

fosh{a (-1 - t)}Al{C (t)E*}dt

*
1

m

/inh{a (1 - E)}Ai{;z(E)Ei}dE
fosh{az(l - E)}M{CZ(E)Ei}dE

9 10 /inh(a t)Ai{E, (t)E*}dE
£ 5

11,12 =fcosh(a1E)Ai{;l(E)Ei}dE

*
0

= o FYrElar
121_3’14 /sinh(azt)Ai{z_;z(t)E Hdt

0

135,16 /cosh(a t)Ai{z (E)Ei}dE

with £* and n* such t?\at ;1(5*) = 0 and z;z(n*) = 0.

5,6

Y

=1
*
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APPENDIX F

LIST OF INTEGRALS IN MASS TRANSFER PROBLEM

e The integrals I, through I,4 in Egs. (5.6.1) through (5.6.15)

are defined as follows:

-1
! -~
! 11’2 =/eRht/2 sinh{al(-l - E)}Ai(cl(E)EildE
£*-1
13’4 = eRht/z Cosh{al("l s E)}Ai{Cl(E)Ei}dE
g}

5,6 /Rdt/z sinh{a2(1 - t) }Ai{cz(E)Eﬁ}dt
*3
7,8 fRGt/z cosh{az(l = £) }Ai{Cz(E)Et}dE

3

R E/Z ~ R g
h +
9’10 f sinh(alt)Ai{cl(t)E }dt

g*

i , Rht/Z ~ ~ + ~
| 111’12 /0 cosh(alt)Ai{Cl(t)E }dt

*0

Rst/2 . Sl
6 -—
13,14 / sinh(a,yE)Ai{z, (E)E*}dE
0
*

115,16 / cosh(aZE)Ai{cz(E)Ei}dE

el

v In integrals I and n”* are such that cl(é*) = 0 and t;z(n*) = 0.

118, ¢
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jaial

=t
l ~
o e =/e(t°‘1 i it H 7T
b} E*
=k Pr
I =3 L (=1) = (ta; - 3 5t G, (t;-1)dt
19,20 ~ V1,2 s g ARsmLadt
« 5*
1 R
I =J_ (1) = oitay ~ EE)E F.(t;1)dt
21,22 5,6 = 2+
n
1. Rd ‘
e e, = R BT i
Eya 24 ™ Jg (1) -'/; 2~ 27" 6, (kh)dk
*
n’0 RhPrl -
IS S T =fe(*°‘1 "7 % (E00d
£%0 RhPrl i
Ty7 38 = 94,50 = T e G
*
£* 0 R
1 e - g (t;0)dt
26,30 " ThE T T g \EvaeL
n*.0 R
i _ [.Go, - _égg . e
I3p,32 = J5,6(® = Je 2 " G,(E;0)dt

* * T *y _
In integrals 117_32, g£™ and n~ are such that zl(g ) = 0 and zz(n ) =

Fl, F2, Gl and G2

(D.15) respectively.

are given by Egs. (5.5.19), (5.5.25), (D.10) and

And finally,

~}
= - e o Py E/Z ~ s ~ ..
Ly 34 = 93,40 -./Z RPr /% F o (E5-1)a (B)dt
-1

£ & o -R,Pr. t/2 e ety s
I35 96 = 33,40 = [ RPrt/2 6 (E5-1)a, (B)at

T —
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1
| -R.t/2

137,38 = J7,8(1) = [Je 6

*

n¥pl
e o [.-R.t/2 . ot
I39,40 = 37,80 ze §777 G,y (£5-1)dy(£)de

FZ(E;—l)d2 (t)dt

n 0 ;
- _ f -R Pr.t/2 ~ o
Li1,42 = 93,400 ‘Z‘; fFTL2 R (E50)4 (D)at

&0
L3446 = 93 4(0) =%-thrlt/2 G, (£;0)d, (E)at
a8
T4s,46 = 77,80 =/‘;_R5t/2 F, (£50)d, (t)dt
n*0
L,7.48 = 97,8(® =/;-R5t/2 G, (£;0)d, (£)dE
B
where 2
dl(E) =ﬁ%f/2 sinh{al(E = {)}Ai{cl(%)Ei}d% (F.1)
€k
and
; ~
dz(E) =J/;R5T/2 sinh{az(E - %)}Ai{Cz(%)Ei}d? (F.2)

tl’

For integrals 133—48’ 6*, n* and t* are defined such that

* * * * .
z,(7) = £, (e7) = 0 and g,(¢7) = z,(t") = 0. In the integrals
I1 through I68; ;l’ c2, zl and 22 are the transformations given by
Eqs. (5.4.8), (5.4.18), (5.5.3) and (5.4.18) respectively. These
notations used in the mass transfer problem are the same as in

Chapter IV in order to facilitate comparisons.
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APPENDIX G

EVALUATION OF SINGLE INTEGRALS

Consider typical single integrals encountered in the problems

with and without mass transfer (Appendices E and F)

g
I =/eRht/2 sinh{a, (£ - E)}Ai{gl(E)Ei}dE (e.1)
E;*
and
g
I =[sinh{al(€ - E)}Ai{cl(E)E*-}dE (G.2)
g*

Eq. (G.1) reduces to (G.2) when Ry, = 0 and hence it is sufficient to
concentrate on Eq. (G.1).

A new variable of integration t, defined by the following

1

equation is introduced:

* *

o (2 Eoz &
2 + 2 tl (G.3)

E(tl) g -

Then the integral (G.l) can be written as

~— * = -~ ~
I = i—z—ifeRht(tl)/z sinh [ (g - £(t)))] AL[ g {e(e))EE D de,
3

(G.4)

D ————————




This integral is in a form suitable for Gauss-Legendre integration.

In fact, Eq. (G.4) can be expressed as

o Bk
I 5 f(cl)dt1

c Al

£(t) = Fnt () ginn Lo, l€ - E(cl)}] Ai [gl{E(tl)}Ei’] (G.6)

Therefore,

n

Z woE(yy)

i=1
where Y, are the zeros of Legendre polynomials and w, are the
corresponding weight factors. n is the number of zeros. The function
f in Eq. (G.6) was calculated at the zeros Y4 using an Airy function
routine described in Re. 45. A modified version of the IBM SSP-routine
DQG32 was employed to carry out the summation (G.7). Solution for
the final eigenvalue was obtained using n = 16, 32 and 96. It was
observed that the difference in the values of ¢ with 32 and 96 points

was negligibly small and therefore a 32—point scheme was adopted

throughout the computational work.
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APPENDIX H

EVALUATION OF DOUBLE INTEGRALS

. Consider a typical double integral in Appendix F:
£ t
1 =fe'RhPr1t/2 Fl(E;g)/eRhT/z sinh{a (€ - 7)}ailc (DE*)didt
g " (H.1)

Substituting for F, from Eq. (5.5.19) the above integral

becomes
1= Al{z, (g)E}T, - Ai{zl(g)E+}12 (H.2)

where

. E ‘
Re o =/e’R‘nP"1t/2 Ai{zl(E)Ei} cRnt/2 sinh{al(E - %)}Ai{r,l(%)E*}d%dE
£* i

(H.3)

By writing the sinh function in terms of exponentials it may be

verified that

1

I =3 Sypp = Soan)

and (H.4)
1

I, =7 (S1a = Sopa)

R

R R
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- where
8 t
(iﬁ = RhPrl)E N s (ta + }‘h‘)'; S A P
Spaa,2aa " 1 2 Ai{z (O)ET} [ e 277 Aife) ()EV)ATdE
+ 5* E*
(H.5)
. y
(2a, = Rh_Prl')E : - (ta + ~R—h)% , - o 5
slnA,zsA =fe 1 2 Al{zl(t)h } e 2 Al{cl(r)E+}drdt
g* £*
(H.6)
It is noticed that integrals (H.5) and (H.6) are of the form

£ .
S =/A(E)/B(%)d€di (H.7)
t:* E*

Thus the original integral (H.l1) has been expressed in terms of

S and S It is

four simpler iterated integrals SlAA’ SZAA’ 1BA 2BA®

possible to simplify (H.7) further by rewriting it in the form

g g
S =/A(E)c(E)dE =/D(E)df: (H.8)
*

E* 3
where
t
c(t) =/B(%)d% (H.9)
E*

The integral (H.8) can be evaluated by employing the transformation

(G.3), i.e.
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e
~~
[ad
N
(]
N{Z
*
(2
+
Kagt
+
™y
*

| U 1 1 (H.10) i
f $ Hence
3
z e A
% S 5 D{t(tl)}dtl (H.11)
i
It then follows that
1
= = * ~ £
S 5——5—2 A{c(tl)}c{t(tl)}dtl (H.12)
-1
Thus
t(tl)
c{E(tl)} =/B(%)d% (H.13)

*
The following transformation is now introduced analogous to Eq. (H.10),

g €6t ~ & EE) + £
T(Tl) ol | e (H.14)

Therefore (H.13) assumes the form
1

g £(t,) - & :
C{t(tl)} = —-——75—————J/;{1(11)}dr1 (H.15)

’ -1
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Finally, Eq. (H.7) reads
1L 1

£ - g* E(tl) g 5 5
&= = 3 A{t(tl)} B{T(Tl)}dtldtl (H.16)

il =

Eq. (H.16) is akin to Eq. (G.4) for single integrals and is in a
form convenient for Gauss-Legendre integration in two dimensions.

Following the procedure in Ref. 46, Eq. (H.16) can be put in the form

5=5‘5*/f(c)/(c 1, )dt. dt (H.17)
2 g f BVt 2819 -
-l =y
or
R
*
g = L;-g—/[h(tl,Tl)dtldtl (H.18)
=% ~]
where
E(:l) = ES g )
h(tl,‘rl) i s A{t(tl) }B{T(Tl)} (H.19)
Let 1
/h(tl,rl)drl = K(tl)
-1

Hence
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1
*
S = 5——2—-5— K(tl)dtl

.l
r n
= 5%5— S ok (y,) (H.21)
1wl

where Y, are the zeros of Legendre polynomials and w, are the

corresponding weight factors. n., is the number of zeros in the

1
interval (-1, 1) along the t; axis.

ST TR e

Now
1

K(Yi) =ﬁ(Yi,Tl)dTl
=1
27

= E wijh(Yi,§;j) (H.22)

j=1

where ;ij are the zeros of Legendre polynomials and wij are the
corresponding weight factors. n, is the number of zeros in the
interval (-1, 1) along the 13 axis.

The final form of the integral (H.16) is

£ - gt al 2
S = T E Wy E wijh(Yi’Yij) (H.23)
i=1  j=1
with h defined by Eq. (H.19)
‘ In the present work, experience with single integrals suggested

the choice n, =n, = 32. The procedure described above was used to




, and S This computation

calculate the integrals S

14’ 52447 S1pa 28A°
leads to the evaluation of I through equations (H.4) and (H.2). The

details of the computation of the integrand are the same as in

Appendix G.
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APPENDLX L

NEWTON-RAPHSON ITERATION FOR THE EIGENVALUE

As mentioned in Secs. 4.5 and 5.7 the eigenvalue ¢y is

evaluated using the equations,

(A(cl)] {c} = {V(ep} (T.1)
and
G[cl,(C(cl) }l= 0 (1.2)

For the zero mass transfer problem, [A(cl)] is an 8 x 8 coefficient

matrix of the left hand sides of Eqs. (4.4.1) - (4.4.8) and V(cl)is

a column matrix of the right hand sides. In the case of the mass trans-
fer problem, [A(cl)] is a 14 x 14 coefficient matrix of the left hand
sides of Egqs. (5.6.1) - (5.6.7) and (5.6.9) - (5.6.15), and again
V(cl) is a column matrix cf the right hand sides. The characteristic
function G is given by Eq. (4.4.11) for the zero mass transfer case
and by Eq. (5.6.17) for the mass transfer problem.

If c, is a guess value, then the first order correction due to the

1
New ton-Raphson method is

bc, = = —— (L-3)

Thus it is necessary to compute the derivative G'(cl). Differentia-

ting (I.2) w.r.t. s

___..____________ﬁ
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N
oC
dG oG 3G i
G'(C)=—-—-=-——-+E g o (1.4)
1 dc1 ¢y 9 i Bcl
i=1

where N = 8 for the zero mass transfer and N = 14 for the mass transfer
case. The calculation of 9G/301 and SG/BCi from Eqs. (4.4.11) and
(5.6.17) is straight-forward. The calculation of 8Ci/3cl, however,

is somewhat involved and it is outlined here.

Differentiating Eq. (I.1l) w.r.t. c

l’
3[a(c,)] 3{V(cy)}
acy . Al 5 1
[A(cl)] ac, ® 3c, fcih = 3c,

or

Bcl

3C, =
3(C} . _1.14] l[ﬂ’-— - Al {c}] (1.5)
C
1l

As before, {8V/3c1} can be easily obtained. The computation of
B[Allacl, however, is a very complicated task because it invo 'ves
differentiating the various integrals (in Appendices E and F) w.r.t.

c, using Leibniz's rule. This leads to tedious algebra and there-

3§
fore the details are omitted. It is sufficient to say that the
derivatives of the above-mentioned integrals can be related to the

integrals themselves through integration by parts. Once B[A]/acl

is known it is a simple matter to compute G'(cl) and hence Ac,.
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FIG. 2 CONTINUITY OF TANGENTIAL VELOCITIES AT INTERFACE

02
P INTERFACE
y=7(x,t)
.
r/RY L ST/R
R
FIG. 3a. BALANCE OF NORMAL STRESSES (zero mass transfer
case)

FIG. 3b. BALANCE OF NORMAL STRESSES (mass transfer case)
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